How to buy cheap viagra

This article contains navigate here affiliate how to buy cheap viagra links to products. We may receive a commission for purchases made through these links.**The information provided in this article is not meant to take the place of medical advice from a trained physician. Always consult with a physician before making any medical how to buy cheap viagra decisions, beginning treatment for a health condition, or starting a new fitness or diet regimen. Getting enough sleep every night is important.

According to the National Heart, Lung, and Blood Institute, sleep deficiency can make it difficult to remember information, make decisions, regulate behavior and emotions, focus, learn new information, and handle change. Individuals who don’t get enough sleep each night may also have slowed reaction times, need extended how to buy cheap viagra time to complete a task, and be more prone to slip ups and mistakes. The CDC recommends that adults between the ages of 18 and 60 years get at least 7 hours of sleep each night. Learning more about sleep trends and mattress statistics can not only help you meet this recommended requirement, but also find the best mattress for your sleep needs, and ensure that the sleep you get is restful and restorative.

We’ve compiled information from a range of studies and authoritative sources that how to buy cheap viagra highlight important statistics related to healthy sleep and the mattress industry. Read on!. Mattress Industry Statistics 1. Nearly half (49%) of Americans how to buy cheap viagra sleep on an innerspring or pillow top mattress, according to the Better Sleep Council.

2. 47% of American adults indicate that they sleep on a queen-size mattress, making queen beds the most common size (Statista). 3 how to buy cheap viagra. The global mattress market had estimated sales of $29 billion in 2019 (Zion Market Research).

4. 30.3% of global mattress sales in how to buy cheap viagra 2019 were in North America (Grand View Research). 5. Zion Market Research projects that global mattress sales will reach $47 billion by 2026.

6 how to buy cheap viagra. Millennials are less likely to spend as much on a mattress as Baby Boomers. Statista found that the average amount Millennials were willing to spend on a queen mattress in 2016 was $726, while the average for Baby Boomers was $1,036. 7 how to buy cheap viagra.

As of August 2019, there were 175 online mattress companies. These retailers include GhostBed, Nectar, Awara, Puffy, DreamCloud, OkiOki, Plush Beds, and Layla (CNBC). 8 how to buy cheap viagra. During the erectile dysfunction treatment viagra, more individuals shopped for a mattress online.

In one survey, 69% of online shoppers indicated that they did not want to shop in a physical store due to health and safety concerns, 41% indicated that they were able to find better prices online, and 25% stated that they did not have sufficient time to shop for a mattress in person (Bed Times Magazine, Better Sleep Council). Sleep Habits and General how to buy cheap viagra Sleep Statistics 9. According to the CDC, the amount of sleep you need each night changes based on your age. Here are their recommendations for each age group.

0 to how to buy cheap viagra 3 months. 14-17 hours 4 to 12 months. 12-16 hours 1 to 2 years. 11-14 hours 3 how to buy cheap viagra to 5 years.

10-13 hours 6 to 12 years. 9-12 hours 13 to 18 years. 8-10 hours 18 how to buy cheap viagra to 60 years. 7+ hours 61 to 64 years.

7-9 hours 65+ years. 7-8 hours how to buy cheap viagra 10. The average amount of sleep Americans get is 7 hours and 6 minutes (Science Advances). 11.

The lowest average daily amount how to buy cheap viagra of sleep for adults is in Japan at 5 hours and 59 minutes, while the highest average sleep for adults is in New Zealand at 7 hours and 30 minutes (Science Advances). 12. According to the American Psychological Association, getting an extra 60 to 90 minutes of sleep each night can make individuals healthier, happier, and safer. 13 how to buy cheap viagra.

20 to 25% of sleep in healthy adults is REM sleep (Healthy Sleep). 14. 48% of individuals report that they snore (American Sleep how to buy cheap viagra Association). 15.

An individual’s body temperature drops between 1 and 2 degrees when they sleep (WebMD). 16 how to buy cheap viagra. Blood pressure and heart rate also change when you’re sleeping. During non-REM sleep, both are lower and steadier, while they can increase during REM sleep (WebMD).

17 how to buy cheap viagra. 41% of adults prefer sleeping in a fetal position, making it the most common sleep position (Better Sleep Council). 18. 1 out of every 4 how to buy cheap viagra married couples reports that they sleep in a separate bed (Better Sleep Council).

Dream Statistics 19. After waking up, you forget 50% of dreams within 5 minutes and 90% within 10 minutes (Better Sleep Council). 20 how to buy cheap viagra. We likely spend about 2 hours dreaming each night (National Institute of Neurological Disorders and Stroke).

21 how to buy cheap viagra. The most vivid dreams take place during REM sleep (National Institute of Neurological Disorders and Stroke). 22. Dreaming is a how to buy cheap viagra normal part of sleep.

Not dreaming during sleep is often an indication of a personality disorder (Better Sleep Council). 23. Approximately 12% of individuals only how to buy cheap viagra dream in black and white. Before the invention of color television, the percentage was even higher (Better Sleep Council).

24. People who lose their sight and how to buy cheap viagra become blind are still able to view images during a dream. However, the dreams of those who are born blind focus on sounds, emotions, touch, and smell (Better Sleep Council). 25.

During your dream, you can only see faces that you have seen in real life (though you may not actually remember how to buy cheap viagra seeing these faces) (Better Sleep Council). 26. While women dream about both sexes equally, men are more likely to dream about other men (about 70% of their dreams) (Better Sleep Council). 27 how to buy cheap viagra.

The majority of dreams (65%) center around anger, sadness, or worry. Only 20% focus on happiness, and only 1% are about sexual acts or feelings (Neuroscience) 28. 80% of individuals with post-traumatic how to buy cheap viagra stress disorder experience nightmares (Bustle). Sleep Deprivation Statistics 29.

35.2% of adults in the United States (35.5% of men and 34.8% of women) get less than 7 hours of sleep each night (CDC). 30 how to buy cheap viagra. According to the CDC, adults who get less than 7 hours of sleep in a 24-hour period are more likely to be physically inactive, a current smoker, or obese when compared with those who get at least 7 hours of sleep. 31.

Sleep deprivation can kill you more how to buy cheap viagra quickly than starvation. You can go two weeks without food, but only 10 days without sleep (Better Sleep Council). 32. Based on a study conducted by the University of Warwick and Federico II University Medical School in Naples, Italy, individuals who get less than 6 hours of sleep each night are up to 12% more likely how to buy cheap viagra to die a premature death.

33. Sleep deprivation and insomnia can cause an average worker to lose the equivalent of 11 days of productivity over the course of a year (The Washington Post). 34 how to buy cheap viagra. Every year, it is estimated that 100,000 deaths in hospitals occur as a result of medical errors, with sleep deprivation being the culprit for many of these errors (American Sleep Association).

36. 4.7% of respondents to an American Sleep Association study reported that they had fallen asleep or nodded off while driving one how to buy cheap viagra or more times in the month preceding the study. 37. 1,500 deaths and 40,000 injuries occur each year in the United States due to drowsy driving (American Sleep Association).

39 how to buy cheap viagra. It is estimated that sleep deprivation causes the United States economy to lose up to $411 billion each year (Rand Corporation). 40. After becoming parents, the average amount of sleep fathers get stays how to buy cheap viagra relatively consistent, while the average amount of sleep mothers get decreases.

Each child in the house can increase the chances that a mother won’t get sufficient sleep by up to 46% (Breaking News English). 41. According to Harvard Health, as many as 80% of psychiatric patients can suffer from chronic problems with sleep, compared with only 10 how to buy cheap viagra to 18% of other adults. Sleep Apnea Statistics 42.

According to the American Sleep Association, obstructive sleep apnea affects 25 million adults in the United States. 43 how to buy cheap viagra. Obstructive sleep apnea affects an estimated 24 to 31% of men and 9 to 21% of women (American Sleep Association). 44.

Canadian sleep apnea statistics 2017 noted that males were three times how to buy cheap viagra as likely as females to share that a loved one had told them that they stopped breathing in their sleep (Statistics Canada). 45. Increasing their body weight by 10% can make individuals up to six times more likely to develop obstructive sleep apnea, according to the Journal of the American Medical Association. 46 how to buy cheap viagra.

20% of individuals with an above average weight suffer from sleep apnea, compared to just 3% of those with an average weight (Johns Hopkins Medicine). 47. The American how to buy cheap viagra Sleep Apnea Association estimates that between 1 and 4% of children have sleep apnea. Many of these children are between the ages of 2 and 8.

48. Sleep apnea death statistics estimate that 38,000 people die each year due how to buy cheap viagra to heart disease complicated by sleep apnea (American Sleep Apnea Association). 49. Sleeping on your side, belly, or back with your head elevated on an adjustable bed may help reduce sleep apnea’s negative effects.

Other Sleep Disorders how to buy cheap viagra Statistics 50. Between 50 and 70 million adults in the United States have a sleep disorder, according to the American Sleep Association. 51. The most how to buy cheap viagra common sleep disorder is insomnia.

30% of adults report having at least short-term insomnia troubles, while 10% report suffering from chronic insomnia (American Sleep Association). 52 how to buy cheap viagra. It is estimated that between 135,000 and 200,000 individuals in the United States suffer from narcolepsy (National Institute of Neurological Disorders and Stroke). 53.

66% of individuals talk in their sleep, although how to buy cheap viagra only 17% report doing so over the past three months (Sleep Medicine). 54. Individuals with parasomnia, a sleep disorder that can cause people to perform unnatural movements in their sleep, have committed various crimes. (Better Sleep Council) how to buy cheap viagra.

55. Sleep walking statistics from the PLOS One show that about 1.5% of adults and 5% of children sleepwalked at least once in the past year. 56 how to buy cheap viagra. Approximately 8% of individuals will deal with one or more sleep paralysis episodes at some point during their lifetime (Sleep Medicine Reviews).

57. Sleep paralysis typically first begins in teenagers, but it occurs most frequently in adults between 20 and 40 years old (Sleep Education). 58. Fear is responsible for as many as 90% of sleep paralysis episodes (Nature and Science of Sleep).

Sleep and Mental Health Statistics 59. Insomnia affects approximately 75% of adults suffering from depression (MSD Manual). 60. Symptoms of insomnia are present in over 90% of military combat-related post-traumatic stress disorder cases (United States Department of Veteran Affairs).

61. A study in Michigan revealed that participants were four times as likely to develop depression if they were dealing with insomnia (ScienceDirect). 62. A connection has been made between early childhood sleep problems and adolescent borderline personality disorder symptoms (JAMA Psychology).

63. In a study conducted in Norway, participants who pushed their normal bedtime back two hours, but got up at the same time in the morning, were less likely to feel as fulfilled or enthusiastic as others. With each day that their sleep was reduced, the negative effect was even greater (Oxford Academic). Child and Teen Sleep Statistics 64.

Premature babies can sleep for up to 90% of the day (Journal of Physiology). 65. Excessive sleepiness during the daytime or sleeping problems are present in approximately 25% of young children (Journal of Physiology). 66.

72.7% of high schoolers and 57.8% of middle schoolers do not reach the daily goal for the recommended amount of sleep for their age groups (CDC). 67. Some of the reasons many teens do not meet their recommended sleep amounts include the use of smartphones or other screened devices before bed, busy school and work schedules, sleep disorders, exposure to too much light in the evenings, and hormonal time shifts (Better Health Channel). 68.

Sleeping problems may be present in up to 70% of children with ADHD (attention-deficit/hyperactivity disorder) (Journal of Translational Medicine). 69. 1 out of every 50 teenagers still wet the bed (Better Sleep Council). College Student Sleep Statistics 70.

60% of college students stated that they had pulled one or more all-nighters (Behavioral Sleep Medicine). 71. Reuters sleep statistics show that among college students, a lack of sleep can have a negative effect on grades. Each night of interrupted sleep was tied to a 0.02-point GPA drop, for up to a 0.14 decrease in GPA (Reuters).

72. As many as 60% of college students don’t receive good quality sleep, and 7.7% of those students suffer from an insomnia disorder (Neuropsychiatric Disease and Treatment). 73. College athletes that don’t get enough sleep have an increased risk of injury (Journal of Pediatric Orthopaedics).

Sleep Aid Statistics 74. Grogginess, oversleeping, and trouble with concentrating are experienced by approximately 80% of prescription sleep pill users (Sleep Disorders). 75. According to the CDC, 8.2% of adults reported taking a sleep medication four or more times over the past week.

76. 20% of adults in the United States say they have tried using a natural sleep remedy over the last year (Consumer Reports). 77. Melatonin sales increased by 500% between 2003 and 2014 (Journal of Clinical Sleep Medicine).

Technology and Sleep Statistics 78. Sleep trackers are used by over 10% of adults to monitor their nightly sleep (Statista). 79. Women are approximately twice as likely to use sleep trackers as men (Statista). 80.

Blue light exposure from digital screens causes an average of 16 minutes of sleep loss each night and an average of 7.6 disruptions to sleep each night (Science Daily). Final Thoughts Keeping up with sleep and mattress statistics and trends is important. It can help identify opportunities where you can make a positive change to enhance your sleep quality, health, or comfort. If your current mattress isn’t up to the task, then it may be time to upgrade to a new, more comfortable model such as GhostBed, Nectar, Awara, Puffy, DreamCloud, OkiOki, Plush Beds, and Layla..

Can you overdose on viagra

Viagra
Viagra professional
Stendra super force
Viagra strips
Cialis soft
Pack price
Buy in Pharmacy
Order in online Pharmacy
Order
Purchase online
Order in Pharmacy
For womens
Canadian Pharmacy
Online Drugstore
Indian Pharmacy
Online Pharmacy
RX pharmacy
Price per pill
Yes
In online pharmacy
Canadian pharmacy only
Register first
Yes
USA pharmacy price
100mg
One pill
Consultation
Consultation
One pill
Prescription
Ask your Doctor
Ask your Doctor
Yes
Yes
No

This project aims to understand anxiety in children with rare genetic syndromes associated with intellectual disability can you overdose on viagra (ID) and the association between anxiety and autism symptomatology in this population. The successful candidate will join the Neurodevelopmental Research Lab at the University of Surrey and will collaborate with researchers within the Cerebra Network for Neurodevelopmental Disorders. Individuals with genetic can you overdose on viagra syndromes and intellectual disability experience poorer mental health outcomes compared to typically developing peers. Despite this, identification of clinically relevant sequelae remains challenging in this population, which precludes equal access to clinical services.

Identifying ‘syndromic’ manifestations of clinical and behavioural outcomes is critical to ensuring appropriate can you overdose on viagra diagnosis and intervention in these populations. The research outlined in this proposal will directly address this challenge in relation to anxiety and autism symptomatology in individuals with Cornelia de Lange syndrome (CdLS). CdLS is caused by mutations can you overdose on viagra on chromosomes 5, 10 or X. Individuals with CdLS evidence increased risk for autism and anxiety (Kline et al., 2016.

Moss &. Howlin, 2009 can you overdose on viagra. Richards et al., 2015). This risk increases with age (Groves et al.,2021) can you overdose on viagra.

Prevalence of autism ranges from 50%-60%. Extreme shyness, selective mutism and social anxiety are characteristic of social difficulties in can you overdose on viagra CdLS. These characteristics are also indicative of anxiety related conditions. This overlap in behavioural phenomenology and the high level of co-morbidity for both autism and anxiety in CdLS presents a complex picture.

An accurate understanding of the phenomenology of anxiety in CdLS and can you overdose on viagra the mechanisms underlying its co-occurrence with autism is critical in order to develop sensitive methods of recognising these disorders when they occur and treating them effectively. The aims of this project are. To evaluate the behavioural and cognitive characteristics of anxiety in individuals can you overdose on viagra with CdLS.To understand which factors mediate the association between anxiety and autism in CdLS. The successful candidate will use a range of research methods including informant questionnaire surveys, behavioural observation and eye-tracking methods to address the aims.

They will communicate with families and stakeholders to ensure effective dissemination of the work, as well can you overdose on viagra as traditional scientific communication via academic papers and conferences. Supervisors. Dr Joanna Moss and Dr Chris Askew This is a 3 year project starting in October 2021 and is open to UK applicants. Entry requirements At least a high 2.1 bachelor’s degree and an can you overdose on viagra MSc degree, one of which needs to be in Psychology.

Please see our website for further detail on our requirements.Funding Full UK tuition fee covered Stipend at £15,285 p.a. (2021/22) RTSG can you overdose on viagra of £1,000 p.a. Personal Computer (provided by the department). How to apply can you overdose on viagra Applications should be submitted via the Psychology PhD programme page on the "Apply" tab.

Please clearly state the studentship title and supervisor on your application. Please also provide a two-page project proposal for the PhD, can you overdose on viagra outlining a plan for your PhD research. The project can include a single syndrome or multiple rare syndromes associated with ID. It can address one or more of the stated research aims.

Within the two-page proposal, please include a can you overdose on viagra 250 word lay-summary suitable for families of children with rare genetic syndromes, explaining the purpose and value of the research. Closing date for applications 26 May 2021 Application enquiries Please contact Dr Joanna Moss ([email protected]).Cardiff University, College of Biomedical and Life Sciences, School of Dentistry invites applications for the post of Clinical Senior Lecturer / Honorary Consultant in Orthodontics (full-time).We are looking for an Orthodontist, committed to education, to join our team, lead one of the world’s longest established postgraduate orthodontic training programmes and provide support for undergraduate orthodontic education. We would like to hear from you if you have the vision and skills to contribute to contemporary can you overdose on viagra design and delivery of our academic programmes. We will help you develop and conduct teaching that will be evidence-based, impactful and inspire students from the UK and around the world.

We will support you to pursue your career aspirations and provide opportunities to undertake can you overdose on viagra research as you develop as a senior clinical academic.As an individual with full GDC specialist registration with considerable experience in Orthodontics you should be committed to delivering the highest standards in dental education for our undergraduate and postgraduate students. This post provides an exciting opportunity to inspire our future dentists and specialists studying at the School of Dentistry, Cardiff University, through shaping and delivery of teaching and training.The successful candidate will be awarded an appropriate honorary contract by Cardiff and Vale University Health Board.For confidential, informal enquiries regarding this vacancy please contact Professor Nicola Innes, Head of School ([email protected])Salary. £79,957 - £103,806 per annum (Clinical Grade D6) – an appointment will be made on the appropriate point of the Clinical Academic Consultant scale. This position provides can you overdose on viagra eligibility for clinical commitment awards.

These are awarded automatically in the absence of an unsatisfactory job plan review once a Consultant has reached top of scale and then at 3 yearly intervals thereafter.This post is full time (37.5 hours per week), open-ended and available from 1 September 2021.Closing date. Saturday, 12 June 2021Interview date can you overdose on viagra. Wednesday, 4 August 2021Cardiff University is committed to supporting and promoting equality and diversity and to creating an inclusive working environment. We believe this can be achieved through attracting, developing, and can you overdose on viagra retaining a diverse range of staff from many different backgrounds.

We therefore welcome applicants from all sections of the community regardless of sex, ethnicity, disability, sexual orientation, trans identity, relationship status, religion or belief, caring responsibilities, or age. In supporting our employees to achieve a balance between their work and their personal lives, we will also consider proposals for flexible working or job share arrangements..

This project aims to https://pearsonlg.com/best-place-to-buy-generic-propecia-online understand anxiety in children with rare genetic syndromes associated with intellectual disability (ID) and the association between anxiety and autism symptomatology how to buy cheap viagra in this population. The successful candidate will join the Neurodevelopmental Research Lab at the University of Surrey and will collaborate with researchers within the Cerebra Network for Neurodevelopmental Disorders. Individuals with genetic syndromes and how to buy cheap viagra intellectual disability experience poorer mental health outcomes compared to typically developing peers. Despite this, identification of clinically relevant sequelae remains challenging in this population, which precludes equal access to clinical services.

Identifying ‘syndromic’ manifestations of clinical and behavioural outcomes is how to buy cheap viagra critical to ensuring appropriate diagnosis and intervention in these populations. The research outlined in this proposal will directly address this challenge in relation to anxiety and autism symptomatology in individuals with Cornelia de Lange syndrome (CdLS). CdLS is caused by mutations on how to buy cheap viagra chromosomes 5, 10 or X. Individuals with CdLS evidence increased risk for autism and anxiety (Kline et al., 2016.

Moss &. Howlin, 2009 how to buy cheap viagra. Richards et al., 2015). This risk how to buy cheap viagra increases with age (Groves et al.,2021).

Prevalence of autism ranges from 50%-60%. Extreme shyness, selective mutism and social anxiety are characteristic of social how to buy cheap viagra difficulties in CdLS. These characteristics are also indicative of anxiety related conditions. This overlap in behavioural phenomenology and the high level of co-morbidity for both autism and anxiety in CdLS presents a complex picture.

An accurate understanding of the phenomenology of anxiety in CdLS and the mechanisms underlying its co-occurrence with autism is critical in order to develop sensitive how to buy cheap viagra methods of recognising these disorders when they occur and treating them effectively. The aims of this project are. To evaluate the behavioural and cognitive characteristics how to buy cheap viagra of anxiety in individuals with CdLS.To understand which factors mediate the association between anxiety and autism in CdLS. The successful candidate will use a range of research methods including informant questionnaire surveys, behavioural observation and eye-tracking methods to address the aims.

They will communicate with families and stakeholders to ensure effective dissemination of the work, as well as traditional scientific communication via academic papers how to buy cheap viagra and conferences. Supervisors. Dr Joanna Moss and Dr Chris Askew This is a 3 year project starting in October 2021 and is open to UK applicants. Entry requirements At least a high 2.1 bachelor’s degree and an MSc degree, one of which needs to how to buy cheap viagra be in Psychology.

Please see our website for further detail on our requirements.Funding Full UK tuition fee covered Stipend at £15,285 p.a. (2021/22) RTSG how to buy cheap viagra of £1,000 p.a. Personal Computer (provided by the department). How to apply Applications should be how to buy cheap viagra submitted via the Psychology PhD programme page on the "Apply" tab.

Please clearly state the studentship title and supervisor on your application. Please also provide a two-page project proposal for how to buy cheap viagra the PhD, outlining a plan for your PhD research. The project can include a single syndrome or multiple rare syndromes associated with ID. It can address one or more of the stated research aims.

Within the two-page proposal, please include a 250 word lay-summary suitable for families of children how to buy cheap viagra with rare genetic syndromes, explaining the purpose and value of the research. Closing date for applications 26 May 2021 Application enquiries Please contact Dr Joanna Moss ([email protected]).Cardiff University, College of Biomedical and Life Sciences, School of Dentistry invites applications for the post of Clinical Senior Lecturer / Honorary Consultant in Orthodontics (full-time).We are looking for an Orthodontist, committed to education, to join our team, lead one of the world’s longest established postgraduate orthodontic training programmes and provide support for undergraduate orthodontic education. We would like to hear from you if you how to buy cheap viagra have the vision and skills to contribute to contemporary design and delivery of our academic programmes. We will help you develop and conduct teaching that will be evidence-based, impactful and inspire students from the UK and around the world.

We will support you to pursue your career aspirations and provide opportunities to undertake research as you develop as a senior clinical academic.As an individual with full GDC specialist how to buy cheap viagra registration with considerable experience in Orthodontics you should be committed to delivering the highest standards in dental education for our undergraduate and postgraduate students. This post provides an exciting opportunity to inspire our future dentists and specialists studying at the School of Dentistry, Cardiff University, through shaping and delivery of teaching and training.The successful candidate will be awarded an appropriate honorary contract by Cardiff and Vale University Health Board.For confidential, informal enquiries regarding this vacancy please contact Professor Nicola Innes, Head of School ([email protected])Salary. £79,957 - £103,806 per annum (Clinical Grade D6) – an appointment will be made on the appropriate point of the Clinical Academic Consultant scale. This position provides eligibility for clinical commitment how to buy cheap viagra awards.

These are awarded automatically in the absence of an unsatisfactory job plan review once a Consultant has reached top of scale and then at 3 yearly intervals thereafter.This post is full time (37.5 hours per week), open-ended and available from 1 September 2021.Closing date. Saturday, 12 June 2021Interview date how to buy cheap viagra. Wednesday, 4 August 2021Cardiff University is committed to supporting and promoting equality and diversity and to creating an inclusive working environment. We believe this can be how to buy cheap viagra achieved through attracting, developing, and retaining a diverse range of staff from many different backgrounds.

We therefore welcome applicants from all sections of the community regardless of sex, ethnicity, disability, sexual orientation, trans identity, relationship status, religion or belief, caring responsibilities, or age. In supporting our employees to achieve a balance between their work and their personal lives, we will also consider proposals for flexible working or job share arrangements..

What side effects may I notice from Viagra?

Side effects that you should report to your doctor or health care professional as soon as possible:

  • allergic reactions like skin rash, itching or hives, swelling of the face, lips, or tongue
  • breathing problems
  • changes in hearing
  • changes in vision, blurred vision, trouble telling blue from green color
  • chest pain
  • fast, irregular heartbeat
  • men: prolonged or painful erection (lasting more than 4 hours)
  • seizures

Side effects that usually do not require medical attention (report to your doctor or health care professional if they continue or are bothersome):

  • diarrhea
  • flushing
  • headache
  • indigestion
  • stuffy or runny nose

This list may not describe all possible side effects. Call your doctor for medical advice about side effects.

Viagra

They recommend equipercentile linking analysis between the depression severity PHQ-9 and preference-based EQ-5D three-level version (EQ-5D-3L. UK value set), the latter used to estimate utility data for QALYs.Furukawa et al1 refer to the process of ‘cross-walking’, whereby the practice of fitting a statistical model to health utility data has been referred to as ‘mapping’ and 'cross-walking’.2 Furukawa et al1 reference two mapping-related papers (their references 7 and 9). However, their analysis seems to have missed rigorous mapping methodology and previous studies which have used these mapping processes, alongside other conceptual considerations when wanting to ‘cross-walk’/‘map’ from a non-preference-based (often condition-specific) measure such as the PHQ-9 to the preference-based EQ-5D-3L.

Furukawa et al1 how to buy cheap viagra posed the http://www.ec-centre-lingolsheim.ac-strasbourg.fr/lecole/coordonnees/ question. How can we estimate quality-adjusted life years (QALYs) based on Patient Health Questionnaire-9 (PHQ-9) scores?. They recommend equipercentile buy cheap viagra linking analysis between the depression severity PHQ-9 and preference-based EQ-5D three-level version (EQ-5D-3L.

UK value set), the latter used to estimate utility data for QALYs.Furukawa et al1 refer to the process of ‘cross-walking’, whereby the practice of fitting a statistical model to health utility data has been referred to as ‘mapping’ and 'cross-walking’.2 Furukawa et al1 reference two mapping-related papers (their references 7 and 9).

How much does viagra cost

How to http://vs.langschlag.at/schulsparen/ cite this article:Singh O P how much does viagra cost. Aftermath of celebrity suicide – Media coverage and role of psychiatrists. Indian J Psychiatry 2020;62:337-8Celebrity suicide is one of the highly publicized events in our how much does viagra cost country. Indians got a glimpse of this following an unfortunate incident where a popular Hindi film actor died of suicide. As expected, the media went into a frenzy as newspapers, news channels, how much does viagra cost and social media were full of stories providing minute details of the suicidal act.

Some even going as far as highlighting the color of the cloth used in the suicide as well as showing the lifeless body of the actor. All kinds of personal details were dug up, and speculations and hypotheses became the order of the day in the next few days that followed. In the process, reputations of many people associated with the actor were besmirched and their private and personal details were freely and blatantly broadcast and discussed how much does viagra cost on electronic, print, and social media. We understand that media houses have their own need and duty to report and sensationalize news for increasing their visibility (aka TRP), but such reporting has huge impacts on the mental health of the vulnerable population.The impact of this was soon realized when many incidents of copycat suicide were reported from all over the country within a few days of the incident. Psychiatrists suddenly started getting distress calls from their patients in despair with increased how much does viagra cost suicidal ideation.

This has become a major area of concern for the psychiatry community.The Indian Psychiatric Society has been consistently trying to engage with media to promote ethical reporting of suicide. Section 24 (1) of Mental Health Care Act, 2017, forbids publication of photograph of mentally ill person without his consent.[1] The Press Council of India has adopted the guidelines of how much does viagra cost World Health Organization report on Preventing Suicide. A resource for media professionals, which came out with an advisory to be followed by media in reporting cases of suicide. It includes points forbidding them from putting stories in prominent positions and unduly repeating them, explicitly describing the method used, providing details about the site/location, using sensational headlines, or using photographs and video footage of the incident.[2] Unfortunately, the advisory seems to have little effect in the aftermath of celebrity suicides. Channels were full of how much does viagra cost speculations about the person's mental condition and illness and also his relationships and finances.

Many fictional accounts of his symptoms and illness were touted, which is not only against the ethics but is also contrary to MHCA, 2017.[1]It went to the extent that the name of his psychiatrist was mentioned and quotes were attributed to him without taking any account from him. The Indian Psychiatric Society has written to the Press Council of India underlining this concern and asking for measures to ensure ethics in reporting suicide.While there is a need for engagement with media to make them aware of the grave impact of negative suicide reporting on the lives of many vulnerable persons, there is how much does viagra cost even a more urgent need for training of psychiatrists regarding the proper way of interaction with media. This has been amply brought out in the aftermath of this incident. Many psychiatrists and mental health professionals were called by media houses to comment on how much does viagra cost the episode. Many psychiatrists were quoted, or “misquoted,” or “quoted out of context,” commenting on the life of a person whom they had never examined and had no “professional authority” to do so.

There were even stories with byline of a psychiatrist where the content provided was not only unscientific but also way beyond the expertise of a psychiatrist. These types of viewpoints perpetuate stigma, myths, and “misleading concepts” about psychiatry and are detrimental to the image of psychiatry in addition to doing harm and injustice to our how much does viagra cost patients. Hence, the need to formulate a guideline for interaction of psychiatrists with the media is imperative.In the infamous Goldwater episode, 12,356 psychiatrists were asked to cast opinion about the fitness of Barry Goldwater for presidential candidature. Out of 2417 respondents, 1189 psychiatrists reported him to be mentally how much does viagra cost unfit while none had actually examined him.[3] This led to the formulation of “The Goldwater Rule” by the American Psychiatric Association in 1973,[4] but we have witnessed the same phenomenon at the time of presidential candidature of Donald Trump.Psychiatrists should be encouraged to interact with media to provide scientific information about mental illnesses and reduction of stigma, but “statements to the media” can be a double-edged sword, and we should know about the rules of engagements and boundaries of interactions. Methods and principles of interaction with media should form a part of our training curriculum.

Many professional societies have guidelines and resource books for interacting with media, and psychiatrists should familiarize themselves with these how much does viagra cost documents. The Press Council guideline is likely to prompt reporters to seek psychiatrists for their expert opinion. It is useful for them to have a template ready with suicide rates, emphasizing multicausality of suicide, role of mental disorders, as well as help available.[5]It is about time that the Indian Psychiatric Society formulated its own guidelines laying down the broad principles and boundaries governing the interaction of Indian psychiatrists with the media. Till then, it is desirable to be guided by the following broad principles:It should be assumed that no statement goes “off the record” as the media person is most likely recording the interview, and we should also record any such conversation from our endIt should be clarified in which capacity comments are being made – professional, personal, or as a representative of an how much does viagra cost organizationOne should not comment on any person whom he has not examinedPsychiatrists should take any such opportunity to educate the public about mental health issuesThe comments should be justified and limited by the boundaries of scientific knowledge available at the moment. References Correspondence Address:Dr.

O P SinghAA 304, Ashabari Apartments, O/31, Baishnabghata, Patuli Township, Kolkata - how much does viagra cost 700 094, West Bengal IndiaSource of Support. None, Conflict of Interest. NoneDOI. 10.4103/psychiatry.IndianJPsychiatry_816_20Abstract Electroconvulsive therapy (ECT) is an effective modality of treatment for a variety of psychiatric disorders. However, it has always been accused of being a coercive, unethical, and dangerous modality of treatment.

The dangerousness of ECT has been mainly attributed to its claimed ability to cause brain damage. This narrative review aims to provide an update of the evidence with regard to whether the practice of ECT is associated with damage to the brain. An accepted definition of brain damage remains elusive. There are also ethical and technical problems in designing studies that look at this question specifically. Thus, even though there are newer technological tools and innovations, any review attempting to answer this question would have to take recourse to indirect methods.

These include structural, functional, and metabolic neuroimaging. Body fluid biochemical marker studies. And follow-up studies of cognitive impairment and incidence of dementia in people who have received ECT among others. The review of literature and present evidence suggests that ECT has a demonstrable impact on the structure and function of the brain. However, there is a lack of evidence at present to suggest that ECT causes brain damage.Keywords.

Adverse effect, brain damage, electroconvulsive therapyHow to cite this article:Jolly AJ, Singh SM. Does electroconvulsive therapy cause brain damage. An update. Indian J Psychiatry 2020;62:339-53 Introduction Electroconvulsive therapy (ECT) as a modality of treatment for psychiatric disorders has existed at least since 1938.[1] ECT is an effective modality of treatment for various psychiatric disorders. However, from the very beginning, the practice of ECT has also faced resistance from various groups who claim that it is coercive and harmful.[2] While the ethical aspects of the practice of ECT have been dealt with elsewhere, the question of harmfulness or brain damage consequent upon the passage of electric current needs to be examined afresh in light of technological advances and new knowledge.[3]The question whether ECT causes brain damage was reviewed in a holistic fashion by Devanand et al.

In the mid-1990s.[4],[5] The authors had attempted to answer this question by reviewing the effect of ECT on the brain in various areas – cognitive side effects, structural neuroimaging studies, neuropathologic studies of patients who had received ECT, autopsy studies of epileptic patients, and finally animal ECS studies. The authors had concluded that ECT does not produce brain damage.This narrative review aims to update the evidence with regard to whether ECT causes brain damage by reviewing relevant literature from 1994 to the present time. Framing the Question The Oxford Dictionary defines damage as physical harm that impairs the value, usefulness, or normal function of something.[6] Among medical dictionaries, the Peter Collins Dictionary defines damage as harm done to things (noun) or to harm something (verb).[7] Brain damage is defined by the British Medical Association Medical Dictionary as degeneration or death of nerve cells and tracts within the brain that may be localized to a particular area of the brain or diffuse.[8] Going by such a definition, brain damage in the context of ECT should refer to death or degeneration of brain tissue, which results in the impairment of functioning of the brain. The importance of precisely defining brain damage shall become evident subsequently in this review.There are now many more tools available to investigate the structure and function of brain in health and illness. However, there are obvious ethical issues in designing human studies that are designed to answer this specific question.

Therefore, one must necessarily take recourse to indirect evidences available through studies that have been designed to answer other research questions. These studies have employed the following methods:Structural neuroimaging studiesFunctional neuroimaging studiesMetabolic neuroimaging studiesBody fluid biochemical marker studiesCognitive impairment studies.While the early studies tended to focus more on establishing the safety of ECT and finding out whether ECT causes gross microscopic brain damage, the later studies especially since the advent of advanced neuroimaging techniques have been focusing more on a mechanistic understanding of ECT. Hence, the primary objective of the later neuroimaging studies has been to look for structural and functional brain changes which might explain how ECT acts rather than evidence of gross structural damage per se. However, put together, all these studies would enable us to answer our titular question to some satisfaction. [Table 1] and [Table 2] provide an overview of the evidence base in this area.

Structural and Functional Neuroimaging Studies Devanand et al. Reviewed 16 structural neuroimaging studies on the effect of ECT on the brain.[4] Of these, two were pneumoencephalography studies, nine were computed tomography (CT) scan studies, and five were magnetic resonance imaging (MRI) studies. However, most of these studies were retrospective in design, with neuroimaging being done in patients who had received ECT in the past. In the absence of baseline neuroimaging, it would be very difficult to attribute any structural brain changes to ECT. In addition, pneumoencephalography, CT scan, and even early 0.3 T MRI provided images with much lower spatial resolution than what is available today.

The authors concluded that there was no evidence to show that ECT caused any structural damage to the brain.[4] Since then, at least twenty more MRI-based structural neuroimaging studies have studied the effect of ECT on the brain. The earliest MRI studies in the early 1990s focused on detecting structural damage following ECT. All of these studies were prospective in design, with the first MRI scan done at baseline and a second MRI scan performed post ECT.[9],[11],[12],[13],[41] While most of the studies imaged the patient once around 24 h after receiving ECT, some studies performed multiple post ECT neuroimaging in the first 24 h after ECT to better capture the acute changes. A single study by Coffey et al. Followed up the patients for a duration of 6 months and repeated neuroimaging again at 6 months in order to capture any long-term changes following ECT.[10]The most important conclusion which emerged from this early series of studies was that there was no evidence of cortical atrophy, change in ventricle size, or increase in white matter hyperintensities.[4] The next major conclusion was that there appeared to be an increase in the T1 and T2 relaxation time immediately following ECT, which returned to normal within 24 h.

This supported the theory that immediately following ECT, there appears to be a temporary breakdown of the blood–brain barrier, leading to water influx into the brain tissue.[11] The last significant observation by Coffey et al. In 1991 was that there was no significant temporal changes in the total volumes of the frontal lobes, temporal lobes, or amygdala–hippocampal complex.[10] This was, however, something which would later be refuted by high-resolution MRI studies. Nonetheless, one inescapable conclusion of these early studies was that there was no evidence of any gross structural brain changes following administration of ECT. Much later in 2007, Szabo et al. Used diffusion-weighted MRI to image patients in the immediate post ECT period and failed to observe any obvious brain tissue changes following ECT.[17]The next major breakthrough came in 2010 when Nordanskog et al.

Demonstrated that there was a significant increase in the volume of the hippocampus bilaterally following a course of ECT in a cohort of patients with depressive illness.[18] This contradicted the earlier observations by Coffey et al. That there was no volume increase in any part of the brain following ECT.[10] This was quite an exciting finding and was followed by several similar studies. However, the perspective of these studies was quite different from the early studies. In contrast to the early studies looking for the evidence of ECT-related brain damage, the newer studies were focused more on elucidating the mechanism of action of ECT. Further on in 2014, Nordanskog et al.

In a follow-up study showed that though there was a significant increase in the volume of the hippocampus 1 week after a course of ECT, the hippocampal volume returned to the baseline after 6 months.[19] Two other studies in 2013 showed that in addition to the hippocampus, the amygdala also showed significant volume increase following ECT.[20],[21] A series of structural neuroimaging studies after that have expanded on these findings and as of now, gray matter volume increase following ECT has been demonstrated in the hippocampus, amygdala, anterior temporal pole, subgenual cortex,[21] right caudate nucleus, and the whole of the medial temporal lobe (MTL) consisting of the hippocampus, amygdala, insula, and the posterosuperior temporal cortex,[24] para hippocampi, right subgenual anterior cingulate gyrus, and right anterior cingulate gyrus,[25] left cerebellar area VIIa crus I,[29] putamen, caudate nucleus, and nucleus acumbens [31] and clusters of increased cortical thickness involving the temporal pole, middle and superior temporal cortex, insula, and inferior temporal cortex.[27] However, the most consistently reported and replicated finding has been the bilateral increase in the volume of the hippocampus and amygdala. In light of these findings, it has been tentatively suggested that ECT acts by inducing neuronal regeneration in the hippocampus – amygdala complex.[42],[43] However, there are certain inconsistencies to this hypothesis. Till date, only one study – Nordanskog et al., 2014 – has followed study patients for a long term – 6 months in their case. And significantly, the authors found out that after increasing immediately following ECT, the hippocampal volume returns back to baseline by 6 months.[19] This, however, was not associated with the relapse of depressive symptoms. Another area of significant confusion has been the correlation of hippocampal volume increase with improvement of depressive symptoms.

Though almost all studies demonstrate a significant increase in hippocampal volume following ECT, a majority of studies failed to demonstrate a correlation between symptom improvement and hippocampal volume increase.[19],[20],[22],[24],[28] However, a significant minority of volumetric studies have demonstrated correlation between increase in hippocampal and/or amygdala volume and improvement of symptoms.[21],[25],[30]Another set of studies have used diffusion tensor imaging, functional MRI (fMRI), anatomical connectome, and structural network analysis to study the effect of ECT on the brain. The first of these studies by Abbott et al. In 2014 demonstrated that on fMRI, the connectivity between right and left hippocampus was significantly reduced in patients with severe depression. It was also shown that the connectivity was normalized following ECT, and symptom improvement was correlated with an increase in connectivity.[22] In a first of its kind DTI study, Lyden et al. In 2014 demonstrated that fractional anisotropy which is a measure of white matter tract or fiber density is increased post ECT in patients with severe depression in the anterior cingulum, forceps minor, and the dorsal aspect of the left superior longitudinal fasciculus.

The authors suggested that ECT acts to normalize major depressive disorder-related abnormalities in the structural connectivity of the dorsal fronto-limbic pathways.[23] Another DTI study in 2015 constructed large-scale anatomical networks of the human brain – connectomes, based on white matter fiber tractography. The authors found significant reorganization in the anatomical connections involving the limbic structure, temporal lobe, and frontal lobe. It was also found that connection changes between amygdala and para hippocampus correlated with reduction in depressive symptoms.[26] In 2016, Wolf et al. Used a source-based morphometry approach to study the structural networks in patients with depression and schizophrenia and the effect of ECT on the same. It was found that the medial prefrontal cortex/anterior cingulate cortex (ACC/MPFC) network, MTL network, bilateral thalamus, and left cerebellar regions/precuneus exhibited significant difference between healthy controls and the patient population.

It was also demonstrated that administration of ECT leads to significant increase in the network strength of the ACC/MPFC network and the MTL network though the increase in network strength and symptom amelioration were not correlated.[32]Building on these studies, a recently published meta-analysis has attempted a quantitative synthesis of brain volume changes – focusing on hippocampal volume increase following ECT in patients with major depressive disorder and bipolar disorder. The authors initially selected 32 original articles from which six articles met the criteria for quantitative synthesis. The results showed significant increase in the volume of the right and left hippocampus following ECT. For the rest of the brain regions, the heterogeneity in protocols and imaging techniques did not permit a quantitative analysis, and the authors have resorted to a narrative review similar to the present one with similar conclusions.[44] Focusing exclusively on hippocampal volume change in ECT, Oltedal et al. In 2018 conducted a mega-analysis of 281 patients with major depressive disorder treated with ECT enrolled at ten different global sites of the Global ECT-MRI Research Collaboration.[45] Similar to previous studies, there was a significant increase in hippocampal volume bilaterally with a dose–response relationship with the number of ECTs administered.

Furthermore, bilateral (B/L) ECT was associated with an equal increase in volume in both right and left hippocampus, whereas right unilateral ECT was associated with greater volume increase in the right hippocampus. Finally, contrary to expectation, clinical improvement was found to be negatively correlated with hippocampal volume.Thus, a review of the current evidence amply demonstrates that from looking for ECT-related brain damage – and finding none, we have now moved ahead to looking for a mechanistic understanding of the effect of ECT. In this regard, it has been found that ECT does induce structural changes in the brain – a fact which has been seized upon by some to claim that ECT causes brain damage.[46] Such statements should, however, be weighed against the definition of damage as understood by the scientific medical community and patient population. Neuroanatomical changes associated with effective ECT can be better described as ECT-induced brain neuroplasticity or ECT-induced brain neuromodulation rather than ECT-induced brain damage. Metabolic Neuroimaging Studies.

Magnetic Resonance Spectroscopic Imaging Magnetic resonance spectroscopic imaging (MRSI) uses a phase-encoding procedure to map the spatial distribution of magnetic resonance (MR) signals of different molecules. The crucial difference, however, is that while MRI maps the MR signals of water molecules, MRSI maps the MR signals generated by different metabolites – such as N-acetyl aspartate (NAA) and choline-containing compounds. However, the concentration of these metabolites is at least 10,000 times lower than water molecules and hence the signal strength generated would also be correspondingly lower. However, MRSI offers us the unique advantage of studying in vivo the change in the concentration of brain metabolites, which has been of great significance in fields such as psychiatry, neurology, and basic neuroscience research.[47]MRSI studies on ECT in patients with depression have focused largely on four metabolites in the human brain – NAA, choline-containing compounds (Cho) which include majorly cell membrane compounds such as glycerophosphocholine, phosphocholine and a miniscule contribution from acetylcholine, creatinine (Cr) and glutamine and glutamate together (Glx). NAA is located exclusively in the neurons, and is suggested to be a marker of neuronal viability and functionality.[48] Choline-containing compounds (Cho) mainly include the membrane compounds, and an increase in Cho would be suggestive of increased membrane turnover.

Cr serves as a marker of cellular energy metabolism, and its levels are usually expected to remain stable. The regions which have been most widely studied in MRSI studies include the bilateral hippocampus and amygdala, dorsolateral prefrontal cortex (DLPFC), and ACC.Till date, five MRSI studies have measured NAA concentration in the hippocampus before and after ECT. Of these, three studies showed that there is no significant change in the NAA concentration in the hippocampus following ECT.[33],[38],[49] On the other hand, two recent studies have demonstrated a statistically significant reduction in NAA concentration in the hippocampus following ECT.[39],[40] The implications of these results are of significant interest to us in answering our titular question. A normal level of NAA following ECT could signify that there is no significant neuronal death or damage following ECT, while a reduction would signal the opposite. However, a direct comparison between these studies is complicated chiefly due to the different ECT protocols, which has been used in these studies.

It must, however, be acknowledged that the three older studies used 1.5 T MRI, whereas the two newer studies used a higher 3 T MRI which offers betters signal-to-noise ratio and hence lesser risk of errors in the measurement of metabolite concentrations. The authors of a study by Njau et al.[39] argue that a change in NAA levels might reflect reversible changes in neural metabolism rather than a permanent change in the number or density of neurons and also that reduced NAA might point to a change in the ratio of mature to immature neurons, which, in fact, might reflect enhanced adult neurogenesis. Thus, the authors warn that to conclude whether a reduction in NAA concentration is beneficial or harmful would take a simultaneous measurement of cognitive functioning, which was lacking in their study. In 2017, Cano et al. Also demonstrated a significant reduction in NAA/Cr ratio in the hippocampus post ECT.

More significantly, the authors also showed a significant increase in Glx levels in the hippocampus following ECT, which was also associated with an increase in hippocampal volume.[40] To explain these three findings, the authors proposed that ECT produces a neuroinflammatory response in the hippocampus – likely mediated by Glx, which has been known to cause inflammation at higher concentrations, thereby accounting for the increase in hippocampal volume with a reduction in NAA concentration. The cause for the volume increase remains unclear – with the authors speculating that it might be due to neuronal swelling or due to angiogenesis. However, the same study and multiple other past studies [21],[25],[30] have demonstrated that hippocampal volume increase was correlated with clinical improvement following ECT. Thus, we are led to the hypothesis that the same mechanism which drives clinical improvement with ECT is also responsible for the cognitive impairment following ECT. Whether this is a purely neuroinflammatory response or a neuroplastic response or a neuroinflammatory response leading to some form of neuroplasticity is a critical question, which remains to be answered.[40]Studies which have analyzed NAA concentration change in other brain areas have also produced conflicting results.

The ACC is another area which has been studied in some detail utilizing the MRSI technique. In 2003, Pfleiderer et al. Demonstrated that there was no significant change in the NAA and Cho levels in the ACC following ECT. This would seem to suggest that there was no neurogenesis or membrane turnover in the ACC post ECT.[36] However, this finding was contested by Merkl et al. In 2011, who demonstrated that NAA levels were significantly reduced in the left ACC in patients with depression and that these levels were significantly elevated following ECT.[37] This again is contested by Njau et al.

Who showed that NAA levels are significantly reduced following ECT in the left dorsal ACC.[39] A direct comparison of these three studies is complicated by the different ECT and imaging parameters used and hence, no firm conclusion can be made on this point at this stage. In addition to this, one study had demonstrated increased NAA levels in the amygdala following administration of ECT,[34] with a trend level increase in Cho levels, which again is suggestive of neurogenesis and/or neuroplasticity. A review of studies on the DLPFC reveals a similarly confusing picture with one study, each showing no change, reduction, and elevation of concentration of NAA following ECT.[35],[37],[39] Here, again, a direct comparison of the three studies is made difficult by the heterogeneous imaging and ECT protocols followed by them.A total of five studies have analyzed the concentration of choline-containing compounds (Cho) in patients undergoing ECT. Conceptually, an increase in Cho signals is indicative of increased membrane turnover, which is postulated to be associated with synaptogenesis, neurogenesis, and maturation of neurons.[31] Of these, two studies measured Cho concentration in the B/L hippocampus, with contrasting results. Ende et al.

In 2000 demonstrated a significant elevation in Cho levels in B/L hippocampus after ECT, while Jorgensen et al. In 2015 failed to replicate the same finding.[33],[38] Cho levels have also been studied in the amygdala, ACC, and the DLPFC. However, none of these studies showed a significant increase or decrease in Cho levels before and after ECT in the respective brain regions studied. In addition, no significant difference was seen in the pre-ECT Cho levels of patients compared to healthy controls.[34],[36],[37]In review, we must admit that MRSI studies are still at a preliminary stage with significant heterogeneity in ECT protocols, patient population, and regions of the brain studied. At this stage, it is difficult to draw any firm conclusions except to acknowledge the fact that the more recent studies – Njau et al., 2017, Cano, 2017, and Jorgensen et al., 2015 – have shown decrease in NAA concentration and no increase in Cho levels [38],[39],[40] – as opposed to the earlier studies by Ende et al.[33] The view offered by the more recent studies is one of a neuroinflammatory models of action of ECT, probably driving neuroplasticity in the hippocampus.

This would offer a mechanistic understanding of both clinical response and the phenomenon of cognitive impairment associated with ECT. However, this conclusion is based on conjecture, and more work needs to be done in this area. Body Fluid Biochemical Marker Studies Another line of evidence for analyzing the effect of ECT on the human brain is the study of concentration of neurotrophins in the plasma or serum. Neurotrophins are small protein molecules which mediate neuronal survival and development. The most prominent among these is brain-derived neurotrophic factor (BDNF) which plays an important role in neuronal survival, plasticity, and migration.[50] A neurotrophic theory of mood disorders was suggested which hypothesized that depressive disorders are associated with a decreased expression of BDNF in the limbic structures, resulting in the atrophy of these structures.[51] It was also postulated that antidepressant treatment has a neurotrophic effect which reverses the neuronal cell loss, thereby producing a therapeutic effect.

It has been well established that BDNF is decreased in mood disorders.[52] It has also been shown that clinical improvement of depression is associated with increase in BDNF levels.[53] Thus, serum BDNF levels have been tentatively proposed as a biomarker for treatment response in depression. Recent meta-analytic evidence has shown that ECT is associated with significant increase in serum BDNF levels in patients with major depressive disorder.[54] Considering that BDNF is a potent stimulator of neurogenesis, the elevation of serum BDNF levels following ECT lends further credence to the theory that ECT leads to neurogenesis in the hippocampus and other limbic structures, which, in turn, mediates the therapeutic action of ECT. Cognitive Impairment Studies Cognitive impairment has always been the single-most important side effect associated with ECT.[55] Concerns regarding long-term cognitive impairment surfaced soon after the introduction of ECT and since then has grown to become one of the most controversial aspects of ECT.[56] Anti-ECT groups have frequently pointed out to cognitive impairment following ECT as evidence of ECT causing brain damage.[56] A meta-analysis by Semkovska and McLoughlin in 2010 is one of the most detailed studies which had attempted to settle this long-standing debate.[57] The authors reviewed 84 studies (2981 participants), which had used a combined total of 22 standardized neuropsychological tests assessing various cognitive functions before and after ECT in patients diagnosed with major depressive disorder. The different cognitive domains reviewed included processing speed, attention/working memory, verbal episodic memory, visual episodic memory, spatial problem-solving, executive functioning, and intellectual ability. The authors concluded that administration of ECT for depression is associated with significant cognitive impairment in the first few days after ECT administration.

However, it was also seen that impairment in cognitive functioning resolved within a span of 2 weeks and thereafter, a majority of cognitive domains even showed mild improvement compared to the baseline performance. It was also demonstrated that not a single cognitive domain showed persistence of impairment beyond 15 days after ECT.Memory impairment following ECT can be analyzed broadly under two conceptual schemes – one that classifies memory impairment as objective memory impairment and subjective memory impairment and the other that classifies it as impairment in anterograde memory versus impairment in retrograde memory. Objective memory can be roughly defined as the ability to retrieve stored information and can be measured by various standardized neuropsychological tests. Subjective memory or meta-memory, on the other hand, refers to the ability to make judgments about one's ability to retrieve stored information.[58] As described previously, it has been conclusively demonstrated that anterograde memory impairment does not persist beyond 2 weeks after ECT.[57] However, one of the major limitations of this meta-analysis was the lack of evidence on retrograde amnesia following ECT. This is particularly unfortunate considering that it is memory impairment – particularly retrograde amnesia which has received the most attention.[59] In addition, reports of catastrophic retrograde amnesia have been repeatedly held up as sensational evidence of the lasting brain damage produced by ECT.[59] Admittedly, studies on retrograde amnesia are fewer and less conclusive than on anterograde amnesia.[60],[61] At present, the results are conflicting, with some studies finding some impairment in retrograde memory – particularly autobiographical retrograde memory up to 6 months after ECT.[62],[63],[64],[65] However, more recent studies have failed to support this finding.[66],[67] While they do demonstrate an impairment in retrograde memory immediately after ECT, it was seen that this deficit returned to pre-ECT levels within a span of 1–2 months and improved beyond baseline performance at 6 months post ECT.[66] Adding to the confusion are numerous factors which confound the assessment of retrograde amnesia.

It has been shown that depressive symptoms can produce significant impairment of retrograde memory.[68],[69] It has also been demonstrated that sine-wave ECT produces significantly more impairment of retrograde memory as compared to brief-pulse ECT.[70] However, from the 1990s onward, sine-wave ECT has been completely replaced by brief-pulse ECT, and it is unclear as to the implications of cognitive impairment from the sine-wave era in contemporary ECT practice.Another area of concern are reports of subjective memory impairment following ECT. One of the pioneers of research into subjective memory impairment were Squire and Chace who published a series of studies in the 1970s demonstrating the adverse effect of bilateral ECT on subjective assessment of memory.[62],[63],[64],[65] However, most of the studies conducted post 1980 – from when sine-wave ECT was replaced by brief-pulse ECT report a general improvement in subjective memory assessments following ECT.[71] In addition, most of the recent studies have failed to find a significant association between measures of subjective and objective memory.[63],[66],[70],[72],[73],[74] It has also been shown that subjective memory impairment is strongly associated with the severity of depressive symptoms.[75] In light of these facts, the validity and value of measures of subjective memory impairment as a marker of cognitive impairment and brain damage following ECT have been questioned. However, concerns regarding subjective memory impairment and catastrophic retrograde amnesia continue to persist, with significant dissonance between the findings of different research groups and patient self-reports in various media.[57]Some studies reported the possibility of ECT being associated with the development of subsequent dementia.[76],[77] However, a recent large, well-controlled prospective Danish study found that the use of ECT was not associated with elevated incidence of dementia.[78] Conclusion Our titular question is whether ECT leads to brain damage, where damage indicates destruction or degeneration of nerves or nerve tracts in the brain, which leads to loss of function. This issue was last addressed by Devanand et al. In 1994 since which time our understanding of ECT has grown substantially, helped particularly by the advent of modern-day neuroimaging techniques which we have reviewed in detail.

And, what these studies reveal is rather than damaging the brain, ECT has a neuromodulatory effect on the brain. The various lines of evidence – structural neuroimaging studies, functional neuroimaging studies, neurochemical and metabolic studies, and serum BDNF studies all point toward this. These neuromodulatory changes have been localized to the hippocampus, amygdala, and certain other parts of the limbic system. How exactly these changes mediate the improvement of depressive symptoms is a question that remains unanswered. However, there is little by way of evidence from neuroimaging studies which indicates that ECT causes destruction or degeneration of neurons.

Though cognitive impairment studies do show that there is objective impairment of certain functions – particularly memory immediately after ECT, these impairments are transient with full recovery within a span of 2 weeks. Perhaps, the single-most important unaddressed concern is retrograde amnesia, which has been shown to persist for up to 2 months post ECT. In this regard, the recent neurometabolic studies have offered a tentative mechanism of action of ECT, producing a transient inflammation in the limbic cortex, which, in turn, drives neurogenesis, thereby exerting a neuromodulatory effect. This hypothesis would explain both the cognitive adverse effects of ECT – due to the transient inflammation – and the long-term improvement in mood – neurogenesis in the hippocampus. Although unproven at present, such a hypothesis would imply that cognitive impairment is tied in with the mechanism of action of ECT and not an indicator of damage to the brain produced by ECT.The review of literature suggests that ECT does cause at least structural and functional changes in the brain, and these are in all probability related to the effects of the ECT.

However, these cannot be construed as brain damage as is usually understood. Due to the relative scarcity of data that directly examines the question of whether ECT causes brain damage, it is not possible to conclusively answer this question. However, in light of enduring ECT survivor accounts, there is a need to design studies that specifically answer this question.Financial support and sponsorshipNil.Conflicts of interestThere are no conflicts of interest. References 1.Payne NA, Prudic J. Electroconvulsive therapy.

Part I. A perspective on the evolution and current practice of ECT. J Psychiatr Pract 2009;15:346-68. 2.Lauber C, Nordt C, Falcato L, Rössler W. Can a seizure help?.

The public's attitude toward electroconvulsive therapy. Psychiatry Res 2005;134:205-9. 3.Stefanazzi M. Is electroconvulsive therapy (ECT) ever ethically justified?. If so, under what circumstances.

HEC Forum 2013;25:79-94. 4.Devanand DP, Dwork AJ, Hutchinson ER, Bolwig TG, Sackeim HA. Does ECT alter brain structure?. Am J Psychiatry 1994;151:957-70. 5.Devanand DP.

Does electroconvulsive therapy damage brain cells?. Semin Neurol 1995;15:351-7. 6.Pearsall J, Trumble B, editors. The Oxford English Reference Dictionary. 2nd ed.

Oxford, England. New York. Oxford University Press. 1996. 7.Collin PH.

Dictionary of Medical Terms. 4th ed. London. Bloomsbury. 2004.

8.Hajdu SI. Entries on laboratory medicine in the first illustrated medical dictionary. Ann Clin Lab Sci 2005;35:465-8. 9.Mander AJ, Whitfield A, Kean DM, Smith MA, Douglas RH, Kendell RE. Cerebral and brain stem changes after ECT revealed by nuclear magnetic resonance imaging.

Br J Psychiatry 1987;151:69-71. 10.Coffey CE, Weiner RD, Djang WT, Figiel GS, Soady SA, Patterson LJ, et al. Brain anatomic effects of electroconvulsive therapy. A prospective magnetic resonance imaging study. Arch Gen Psychiatry 1991;48:1013-21.

11.Scott AI, Douglas RH, Whitfield A, Kendell RE. Time course of cerebral magnetic resonance changes after electroconvulsive therapy. Br J Psychiatry 1990;156:551-3. 12.Pande AC, Grunhaus LJ, Aisen AM, Haskett RF. A preliminary magnetic resonance imaging study of ECT-treated depressed patients.

Biol Psychiatry 1990;27:102-4. 13.Coffey CE, Figiel GS, Djang WT, Sullivan DC, Herfkens RJ, Weiner RD. Effects of ECT on brain structure. A pilot prospective magnetic resonance imaging study. Am J Psychiatry 1988;145:701-6.

14.Qiu H, Li X, Zhao W, Du L, Huang P, Fu Y, et al. Electroconvulsive therapy-Induced brain structural and functional changes in major depressive disorders. A longitudinal study. Med Sci Monit 2016;22:4577-86. 15.Kunigiri G, Jayakumar PN, Janakiramaiah N, Gangadhar BN.

MRI T2 relaxometry of brain regions and cognitive dysfunction following electroconvulsive therapy. Indian J Psychiatry 2007;49:195-9. [PUBMED] [Full text] 16.Pirnia T, Joshi SH, Leaver AM, Vasavada M, Njau S, Woods RP, et al. Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex. Transl Psychiatry 2016;6:e832.

17.Szabo K, Hirsch JG, Krause M, Ende G, Henn FA, Sartorius A, et al. Diffusion weighted MRI in the early phase after electroconvulsive therapy. Neurol Res 2007;29:256-9. 18.Nordanskog P, Dahlstrand U, Larsson MR, Larsson EM, Knutsson L, Johanson A. Increase in hippocampal volume after electroconvulsive therapy in patients with depression.

A volumetric magnetic resonance imaging study. J ECT 2010;26:62-7. 19.Nordanskog P, Larsson MR, Larsson EM, Johanson A. Hippocampal volume in relation to clinical and cognitive outcome after electroconvulsive therapy in depression. Acta Psychiatr Scand 2014;129:303-11.

20.Tendolkar I, van Beek M, van Oostrom I, Mulder M, Janzing J, Voshaar RO, et al. Electroconvulsive therapy increases hippocampal and amygdala volume in therapy refractory depression. A longitudinal pilot study. Psychiatry Res 2013;214:197-203. 21.Dukart J, Regen F, Kherif F, Colla M, Bajbouj M, Heuser I, et al.

Electroconvulsive therapy-induced brain plasticity determines therapeutic outcome in mood disorders. Proc Natl Acad Sci U S A 2014;111:1156-61. 22.Abbott CC, Jones T, Lemke NT, Gallegos P, McClintock SM, Mayer AR, et al. Hippocampal structural and functional changes associated with electroconvulsive therapy response. Transl Psychiatry 2014;4:e483.

23.Lyden H, Espinoza RT, Pirnia T, Clark K, Joshi SH, Leaver AM, et al. Electroconvulsive therapy mediates neuroplasticity of white matter microstructure in major depression. Transl Psychiatry 2014;4:e380. 24.Bouckaert F, De Winter FL, Emsell L, Dols A, Rhebergen D, Wampers M, et al. Grey matter volume increase following electroconvulsive therapy in patients with late life depression.

A longitudinal MRI study. J Psychiatry Neurosci 2016;41:105-14. 25.Ota M, Noda T, Sato N, Okazaki M, Ishikawa M, Hattori K, et al. Effect of electroconvulsive therapy on gray matter volume in major depressive disorder. J Affect Disord 2015;186:186-91.

26.Zeng J, Luo Q, Du L, Liao W, Li Y, Liu H, et al. Reorganization of anatomical connectome following electroconvulsive therapy in major depressive disorder. Neural Plast 2015;2015:271674. 27.van Eijndhoven P, Mulders P, Kwekkeboom L, van Oostrom I, van Beek M, Janzing J, et al. Bilateral ECT induces bilateral increases in regional cortical thickness.

Transl Psychiatry 2016;6:e874. 28.Bouckaert F, Dols A, Emsell L, De Winter FL, Vansteelandt K, Claes L, et al. Relationship between hippocampal volume, serum BDNF, and depression severity following electroconvulsive therapy in late-life depression. Neuropsychopharmacology 2016;41:2741-8. 29.Depping MS, Nolte HM, Hirjak D, Palm E, Hofer S, Stieltjes B, et al.

Cerebellar volume change in response to electroconvulsive therapy in patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 2017;73:31-5. 30.Joshi SH, Espinoza RT, Pirnia T, Shi J, Wang Y, Ayers B, et al. Structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy in major depression. Biol Psychiatry 2016;79:282-92.

31.Wade BS, Joshi SH, Njau S, Leaver AM, Vasavada M, Woods RP, et al. Effect of electroconvulsive therapy on striatal morphometry in major depressive disorder. Neuropsychopharmacology 2016;41:2481-91. 32.Wolf RC, Nolte HM, Hirjak D, Hofer S, Seidl U, Depping MS, et al. Structural network changes in patients with major depression and schizophrenia treated with electroconvulsive therapy.

Eur Neuropsychopharmacol 2016;26:1465-74. 33.Ende G, Braus DF, Walter S, Weber-Fahr W, Henn FA. The hippocampus in patients treated with electroconvulsive therapy. A proton magnetic resonance spectroscopic imaging study. Arch Gen Psychiatry 2000;57:937-43.

34.Michael N, Erfurth A, Ohrmann P, Arolt V, Heindel W, Pfleiderer B. Metabolic changes within the left dorsolateral prefrontal cortex occurring with electroconvulsive therapy in patients with treatment resistant unipolar depression. Psychol Med 2003;33:1277-84. 35.Michael N, Erfurth A, Ohrmann P, Arolt V, Heindel W, Pfleiderer B. Neurotrophic effects of electroconvulsive therapy.

A proton magnetic resonance study of the left amygdalar region in patients with treatment-resistant depression. Neuropsychopharmacology 2003;28:720-5. 36.Pfleiderer B, Michael N, Erfurth A, Ohrmann P, Hohmann U, Wolgast M, et al. Effective electroconvulsive therapy reverses glutamate/glutamine deficit in the left anterior cingulum of unipolar depressed patients. Psychiatry Res 2003;122:185-92.

37.Merkl A, Schubert F, Quante A, Luborzewski A, Brakemeier EL, Grimm S, et al. Abnormal cingulate and prefrontal cortical neurochemistry in major depression after electroconvulsive therapy. Biol Psychiatry 2011;69:772-9. 38.Jorgensen A, Magnusson P, Hanson LG, Kirkegaard T, Benveniste H, Lee H, et al. Regional brain volumes, diffusivity, and metabolite changes after electroconvulsive therapy for severe depression.

Acta Psychiatr Scand 2016;133:154-64. 39.Njau S, Joshi SH, Espinoza R, Leaver AM, Vasavada M, Marquina A, et al. Neurochemical correlates of rapid treatment response to electroconvulsive therapy in patients with major depression. J Psychiatry Neurosci 2017;42:6-16. 40.Cano M, Martínez-Zalacaín I, Bernabéu-Sanz Á, Contreras-Rodríguez O, Hernández-Ribas R, Via E, et al.

Brain volumetric and metabolic correlates of electroconvulsive therapy for treatment-resistant depression. A longitudinal neuroimaging study. Transl Psychiatry 2017;7:e1023. 41.Figiel GS, Krishnan KR, Doraiswamy PM. Subcortical structural changes in ECT-induced delirium.

J Geriatr Psychiatry Neurol 1990;3:172-6. 42.Rotheneichner P, Lange S, O'Sullivan A, Marschallinger J, Zaunmair P, Geretsegger C, et al. Hippocampal neurogenesis and antidepressive therapy. Shocking relations. Neural Plast 2014;2014:723915.

43.Singh A, Kar SK. How electroconvulsive therapy works?. Understanding the neurobiological mechanisms. Clin Psychopharmacol Neurosci 2017;15:210-21. 44.Gbyl K, Videbech P.

Electroconvulsive therapy increases brain volume in major depression. A systematic review and meta-analysis. Acta Psychiatr Scand 2018;138:180-95. 45.Oltedal L, Narr KL, Abbott C, Anand A, Argyelan M, Bartsch H, et al. Volume of the human hippocampus and clinical response following electroconvulsive therapy.

Biol Psychiatry 2018;84:574-81. 46.Breggin PR. Brain-Disabling Treatments in Psychiatry. Drugs, Electroshock, and the Role of the FDA. New York.

Springer Pub. Co.. 1997. 47.Posse S, Otazo R, Dager SR, Alger J. MR spectroscopic imaging.

Principles and recent advances. J Magn Reson Imaging 2013;37:1301-25. 48.Simmons ML, Frondoza CG, Coyle JT. Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 1991;45:37-45.

49.Obergriesser T, Ende G, Braus DF, Henn FA. Long-term follow-up of magnetic resonance-detectable choline signal changes in the hippocampus of patients treated with electroconvulsive therapy. J Clin Psychiatry 2003;64:775-80. 50.Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity.

The synaptic consolidation hypothesis. Prog Neurobiol 2005;76:99-125. 51.Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006;59:1116-27.

52.Bocchio-Chiavetto L, Bagnardi V, Zanardini R, Molteni R, Nielsen MG, Placentino A, et al. Serum and plasma BDNF levels in major depression. A replication study and meta-analyses. World J Biol Psychiatry 2010;11:763-73. 53.Brunoni AR, Lopes M, Fregni F.

A systematic review and meta-analysis of clinical studies on major depression and BDNF levels. Implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol 2008;11:1169-80. 54.Rocha RB, Dondossola ER, Grande AJ, Colonetti T, Ceretta LB, Passos IC, et al. Increased BDNF levels after electroconvulsive therapy in patients with major depressive disorder.

A meta-analysis study. J Psychiatr Res 2016;83:47-53. 55.UK ECT Review Group. Efficacy and safety of electroconvulsive therapy in depressive disorders. A systematic review and meta-analysis.

Lancet 2003;361:799-808. 56.57.Semkovska M, McLoughlin DM. Objective cognitive performance associated with electroconvulsive therapy for depression. A systematic review and meta-analysis. Biol Psychiatry 2010;68:568-77.

58.Tulving E, Madigan SA. Memory and verbal learning. Annu Rev Psychol 1970;21:437-84. 59.Rose D, Fleischmann P, Wykes T, Leese M, Bindman J. Patients' perspectives on electroconvulsive therapy.

Systematic review. BMJ 2003;326:1363. 60.Semkovska M, McLoughlin DM. Measuring retrograde autobiographical amnesia following electroconvulsive therapy. Historical perspective and current issues.

J ECT 2013;29:127-33. 61.Fraser LM, O'Carroll RE, Ebmeier KP. The effect of electroconvulsive therapy on autobiographical memory. A systematic review. J ECT 2008;24:10-7.

62.Squire LR, Chace PM. Memory functions six to nine months after electroconvulsive therapy. Arch Gen Psychiatry 1975;32:1557-64. 63.Squire LR, Slater PC. Electroconvulsive therapy and complaints of memory dysfunction.

A prospective three-year follow-up study. Br J Psychiatry 1983;142:1-8. 64.Squire LR, Slater PC, Miller PL. Retrograde amnesia and bilateral electroconvulsive therapy. Long-term follow-up.

Arch Gen Psychiatry 1981;38:89-95. 65.Squire LR, Wetzel CD, Slater PC. Memory complaint after electroconvulsive therapy. Assessment with a new self-rating instrument. Biol Psychiatry 1979;14:791-801.

66.Calev A, Nigal D, Shapira B, Tubi N, Chazan S, Ben-Yehuda Y, et al. Early and long-term effects of electroconvulsive therapy and depression on memory and other cognitive functions. J Nerv Ment Dis 1991;179:526-33. 67.Sackeim HA, Prudic J, Devanand DP, Nobler MS, Lisanby SH, Peyser S, et al. A prospective, randomized, double-blind comparison of bilateral and right unilateral electroconvulsive therapy at different stimulus intensities.

Arch Gen Psychiatry 2000;57:425-34. 68.Abrams R. Does brief-pulse ECT cause persistent or permanent memory impairment?. J ECT 2002;18:71-3. 69.Peretti CS, Danion JM, Grangé D, Mobarek N.

Bilateral ECT and autobiographical memory of subjective experiences related to melancholia. A pilot study. J Affect Disord 1996;41:9-15. 70.Weiner RD, Rogers HJ, Davidson JR, Squire LR. Effects of stimulus parameters on cognitive side effects.

Ann N Y Acad Sci 1986;462:315-25. 71.Prudic J, Peyser S, Sackeim HA. Subjective memory complaints. A review of patient self-assessment of memory after electroconvulsive therapy. J ECT 2000;16:121-32.

72.Sackeim HA, Prudic J, Devanand DP, Kiersky JE, Fitzsimons L, Moody BJ, et al. Effects of stimulus intensity and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy. N Engl J Med 1993;328:839-46. 73.Frith CD, Stevens M, Johnstone EC, Deakin JF, Lawler P, Crow TJ. Effects of ECT and depression on various aspects of memory.

Br J Psychiatry 1983;142:610-7. 74.Ng C, Schweitzer I, Alexopoulos P, Celi E, Wong L, Tuckwell V, et al. Efficacy and cognitive effects of right unilateral electroconvulsive therapy. J ECT 2000;16:370-9. 75.Coleman EA, Sackeim HA, Prudic J, Devanand DP, McElhiney MC, Moody BJ.

Subjective memory complaints prior to and following electroconvulsive therapy. Biol Psychiatry 1996;39:346-56. 76.Berggren Š, Gustafson L, Höglund P, Johanson A. A long-term longitudinal follow-up of depressed patients treated with ECT with special focus on development of dementia. J Affect Disord 2016;200:15-24.

77.Brodaty H, Hickie I, Mason C, Prenter L. A prospective follow-up study of ECT outcome in older depressed patients. J Affect Disord 2000;60:101-11. 78.Osler M, Rozing MP, Christensen GT, Andersen PK, Jørgensen MB. Electroconvulsive therapy and risk of dementia in patients with affective disorders.

A cohort study. Lancet Psychiatry 2018;5:348-56. Correspondence Address:Dr. Shubh Mohan SinghDepartment of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh IndiaSource of Support. None, Conflict of Interest.

NoneDOI. 10.4103/psychiatry.IndianJPsychiatry_239_19 Tables [Table 1], [Table 2].

How to cite http://go-fore-the-green.com/?p=374 this how to buy cheap viagra article:Singh O P. Aftermath of celebrity suicide – Media coverage and role of psychiatrists. Indian J Psychiatry 2020;62:337-8Celebrity suicide is one how to buy cheap viagra of the highly publicized events in our country.

Indians got a glimpse of this following an unfortunate incident where a popular Hindi film actor died of suicide. As expected, the media went into a frenzy as newspapers, news channels, and social media were full of stories providing minute how to buy cheap viagra details of the suicidal act. Some even going as far as highlighting the color of the cloth used in the suicide as well as showing the lifeless body of the actor.

All kinds of personal details were dug up, and speculations and hypotheses became the order of the day in the next few days that followed. In the process, reputations of many people how to buy cheap viagra associated with the actor were besmirched and their private and personal details were freely and blatantly broadcast and discussed on electronic, print, and social media. We understand that media houses have their own need and duty to report and sensationalize news for increasing their visibility (aka TRP), but such reporting has huge impacts on the mental health of the vulnerable population.The impact of this was soon realized when many incidents of copycat suicide were reported from all over the country within a few days of the incident.

Psychiatrists suddenly started getting distress calls from how to buy cheap viagra their patients in despair with increased suicidal ideation. This has become a major area of concern for the psychiatry community.The Indian Psychiatric Society has been consistently trying to engage with media to promote ethical reporting of suicide. Section 24 (1) of Mental Health Care Act, 2017, forbids publication of photograph of mentally ill person without his consent.[1] The Press Council of India has adopted the guidelines of World Health Organization report on Preventing how to buy cheap viagra Suicide.

A resource for media professionals, which came out with an advisory to be followed by media in reporting cases of suicide. It includes points forbidding them from putting stories in prominent positions and unduly repeating them, explicitly describing the method used, providing details about the site/location, using sensational headlines, or using photographs and video footage of the incident.[2] Unfortunately, the advisory seems to have little effect in the aftermath of celebrity suicides. Channels were full of speculations about the person's mental condition and illness and also his relationships how to buy cheap viagra and finances.

Many fictional accounts of his symptoms and illness were touted, which is not only against the ethics but is also contrary to MHCA, 2017.[1]It went to the extent that the name of his psychiatrist was mentioned and quotes were attributed to him without taking any account from him. The Indian Psychiatric Society has written to the Press Council of India underlining this concern and how to buy cheap viagra asking for measures to ensure ethics in reporting suicide.While there is a need for engagement with media to make them aware of the grave impact of negative suicide reporting on the lives of many vulnerable persons, there is even a more urgent need for training of psychiatrists regarding the proper way of interaction with media. This has been amply brought out in the aftermath of this incident.

Many psychiatrists and mental how to buy cheap viagra health professionals were called by media houses to comment on the episode. Many psychiatrists were quoted, or “misquoted,” or “quoted out of context,” commenting on the life of a person whom they had never examined and had no “professional authority” to do so. There were even stories with byline of a psychiatrist where the content provided was not only unscientific but also way beyond the expertise of a psychiatrist.

These types of viewpoints perpetuate stigma, myths, and “misleading concepts” about psychiatry and are detrimental to the image of psychiatry in addition to doing harm and how to buy cheap viagra injustice to our patients. Hence, the need to formulate a guideline for interaction of psychiatrists with the media is imperative.In the infamous Goldwater episode, 12,356 psychiatrists were asked to cast opinion about the fitness of Barry Goldwater for presidential candidature. Out of 2417 respondents, 1189 psychiatrists reported him to be mentally unfit while none had actually examined him.[3] This led to the formulation of “The Goldwater Rule” by the American Psychiatric Association in 1973,[4] but we have witnessed the same phenomenon at the time of presidential candidature of Donald Trump.Psychiatrists how to buy cheap viagra should be encouraged to interact with media to provide scientific information about mental illnesses and reduction of stigma, but “statements to the media” can be a double-edged sword, and we should know about the rules of engagements and boundaries of interactions.

Methods and principles of interaction with media should form a part of our training curriculum. Many professional societies have guidelines and resource books for interacting with media, and psychiatrists should familiarize themselves how to buy cheap viagra with these documents. The Press Council guideline is likely to prompt reporters to seek psychiatrists for their expert opinion.

It is useful for them to have a template ready with suicide rates, emphasizing multicausality of suicide, role of mental disorders, as well as help available.[5]It is about time that the Indian Psychiatric Society formulated its own guidelines laying down the broad principles and boundaries governing the interaction of Indian psychiatrists with the media. Till then, it is desirable to be guided by the following broad principles:It should be assumed that no statement goes “off the record” as the media person is most likely recording the interview, and we should also record any such conversation from our endIt should be clarified in which capacity comments are being made how to buy cheap viagra – professional, personal, or as a representative of an organizationOne should not comment on any person whom he has not examinedPsychiatrists should take any such opportunity to educate the public about mental health issuesThe comments should be justified and limited by the boundaries of scientific knowledge available at the moment. References Correspondence Address:Dr.

O P SinghAA 304, Ashabari Apartments, O/31, Baishnabghata, Patuli Township, Kolkata - 700 094, West Bengal IndiaSource of Support how to buy cheap viagra. None, Conflict of Interest. NoneDOI.

10.4103/psychiatry.IndianJPsychiatry_816_20Abstract Electroconvulsive therapy (ECT) is an effective modality of treatment for a variety of psychiatric disorders. However, it has always been accused of being a coercive, unethical, and dangerous modality of treatment. The dangerousness of ECT has been mainly attributed to its claimed ability to cause brain damage.

This narrative review aims to provide an update of the evidence with regard to whether the practice of ECT is associated with damage to the brain. An accepted definition of brain damage remains elusive. There are also ethical and technical problems in designing studies that look at this question specifically.

Thus, even though there are newer technological tools and innovations, any review attempting to answer this question would have to take recourse to indirect methods. These include structural, functional, and metabolic neuroimaging. Body fluid biochemical marker studies.

And follow-up studies of cognitive impairment and incidence of dementia in people who have received ECT among others. The review of literature and present evidence suggests that ECT has a demonstrable impact on the structure and function of the brain. However, there is a lack of evidence at present to suggest that ECT causes brain damage.Keywords.

Adverse effect, brain damage, electroconvulsive therapyHow to cite this article:Jolly AJ, Singh SM. Does electroconvulsive therapy cause brain damage. An update.

Indian J Psychiatry 2020;62:339-53 Introduction Electroconvulsive therapy (ECT) as a modality of treatment for psychiatric disorders has existed at least since 1938.[1] ECT is an effective modality of treatment for various psychiatric disorders. However, from the very beginning, the practice of ECT has also faced resistance from various groups who claim that it is coercive and harmful.[2] While the ethical aspects of the practice of ECT have been dealt with elsewhere, the question of harmfulness or brain damage consequent upon the passage of electric current needs to be examined afresh in light of technological advances and new knowledge.[3]The question whether ECT causes brain damage was reviewed in a holistic fashion by Devanand et al. In the mid-1990s.[4],[5] The authors had attempted to answer this question by reviewing the effect of ECT on the brain in various areas – cognitive side effects, structural neuroimaging studies, neuropathologic studies of patients who had received ECT, autopsy studies of epileptic patients, and finally animal ECS studies.

The authors had concluded that ECT does not produce brain damage.This narrative review aims to update the evidence with regard to whether ECT causes brain damage by reviewing relevant literature from 1994 to the present time. Framing the Question The Oxford Dictionary defines damage as physical harm that impairs the value, usefulness, or normal function of something.[6] Among medical dictionaries, the Peter Collins Dictionary defines damage as harm done to things (noun) or to harm something (verb).[7] Brain damage is defined by the British Medical Association Medical Dictionary as degeneration or death of nerve cells and tracts within the brain that may be localized to a particular area of the brain or diffuse.[8] Going by such a definition, brain damage in the context of ECT should refer to death or degeneration of brain tissue, which results in the impairment of functioning of the brain. The importance of precisely defining brain damage shall become evident subsequently in this review.There are now many more tools available to investigate the structure and function of brain in health and illness.

However, there are obvious ethical issues in designing human studies that are designed to answer this specific question. Therefore, one must necessarily take recourse to indirect evidences available through studies that have been designed to answer other research questions. These studies have employed the following methods:Structural neuroimaging studiesFunctional neuroimaging studiesMetabolic neuroimaging studiesBody fluid biochemical marker studiesCognitive impairment studies.While the early studies tended to focus more on establishing the safety of ECT and finding out whether ECT causes gross microscopic brain damage, the later studies especially since the advent of advanced neuroimaging techniques have been focusing more on a mechanistic understanding of ECT.

Hence, the primary objective of the later neuroimaging studies has been to look for structural and functional brain changes which might explain how ECT acts rather than evidence of gross structural damage per se. However, put together, all these studies would enable us to answer our titular question to some satisfaction. [Table 1] and [Table 2] provide an overview of the evidence base in this area.

Structural and Functional Neuroimaging Studies Devanand et al. Reviewed 16 structural neuroimaging studies on the effect of ECT on the brain.[4] Of these, two were pneumoencephalography studies, nine were computed tomography (CT) scan studies, and five were magnetic resonance imaging (MRI) studies. However, most of these studies were retrospective in design, with neuroimaging being done in patients who had received ECT in the past.

In the absence of baseline neuroimaging, it would be very difficult to attribute any structural brain changes to ECT. In addition, pneumoencephalography, CT scan, and even early 0.3 T MRI provided images with much lower spatial resolution than what is available today. The authors concluded that there was no evidence to show that ECT caused any structural damage to the brain.[4] Since then, at least twenty more MRI-based structural neuroimaging studies have studied the effect of ECT on the brain.

The earliest MRI studies in the early 1990s focused on detecting structural damage following ECT. All of these studies were prospective in design, with the first MRI scan done at baseline and a second MRI scan performed post ECT.[9],[11],[12],[13],[41] While most of the studies imaged the patient once around 24 h after receiving ECT, some studies performed multiple post ECT neuroimaging in the first 24 h after ECT to better capture the acute changes. A single study by Coffey et al.

Followed up the patients for a duration of 6 months and repeated neuroimaging again at 6 months in order to capture any long-term changes following ECT.[10]The most important conclusion which emerged from this early series of studies was that there was no evidence of cortical atrophy, change in ventricle size, or increase in white matter hyperintensities.[4] The next major conclusion was that there appeared to be an increase in the T1 and T2 relaxation time immediately following ECT, which returned to normal within 24 h. This supported the theory that immediately following ECT, there appears to be a temporary breakdown of the blood–brain barrier, leading to water influx into the brain tissue.[11] The last significant observation by Coffey et al. In 1991 was that there was no significant temporal changes in the total volumes of the frontal lobes, temporal lobes, or amygdala–hippocampal complex.[10] This was, however, something which would later be refuted by high-resolution MRI studies.

Nonetheless, one inescapable conclusion of these early studies was that there was no evidence of any gross structural brain changes following administration of ECT. Much later in 2007, Szabo et al. Used diffusion-weighted MRI to image patients in the immediate post ECT period and failed to observe any obvious brain tissue changes following ECT.[17]The next major breakthrough came in 2010 when Nordanskog et al.

Demonstrated that there was a significant increase in the volume of the hippocampus bilaterally following a course of ECT in a cohort of patients with depressive illness.[18] This contradicted the earlier observations by Coffey et al. That there was no volume increase in any part of the brain following ECT.[10] This was quite an exciting finding and was followed by several similar studies. However, the perspective of these studies was quite different from the early studies.

In contrast to the early studies looking for the evidence of ECT-related brain damage, the newer studies were focused more on elucidating the mechanism of action of ECT. Further on in 2014, Nordanskog et al. In a follow-up study showed that though there was a significant increase in the volume of the hippocampus 1 week after a course of ECT, the hippocampal volume returned to the baseline after 6 months.[19] Two other studies in 2013 showed that in addition to the hippocampus, the amygdala also showed significant volume increase following ECT.[20],[21] A series of structural neuroimaging studies after that have expanded on these findings and as of now, gray matter volume increase following ECT has been demonstrated in the hippocampus, amygdala, anterior temporal pole, subgenual cortex,[21] right caudate nucleus, and the whole of the medial temporal lobe (MTL) consisting of the hippocampus, amygdala, insula, and the posterosuperior temporal cortex,[24] para hippocampi, right subgenual anterior cingulate gyrus, and right anterior cingulate gyrus,[25] left cerebellar area VIIa crus I,[29] putamen, caudate nucleus, and nucleus acumbens [31] and clusters of increased cortical thickness involving the temporal pole, middle and superior temporal cortex, insula, and inferior temporal cortex.[27] However, the most consistently reported and replicated finding has been the bilateral increase in the volume of the hippocampus and amygdala.

In light of these findings, it has been tentatively suggested that ECT acts by inducing neuronal regeneration in the hippocampus – amygdala complex.[42],[43] However, there are certain inconsistencies to this hypothesis. Till date, only one study – Nordanskog et al., 2014 – has followed study patients for a long term – 6 months in their case. And significantly, the authors found out that after increasing immediately following ECT, the hippocampal volume returns back to baseline by 6 months.[19] This, however, was not associated with the relapse of depressive symptoms.

Another area of significant confusion has been the correlation of hippocampal volume increase with improvement of depressive symptoms. Though almost all studies demonstrate a significant increase in hippocampal volume following ECT, a majority of studies failed to demonstrate a correlation between symptom improvement and hippocampal volume increase.[19],[20],[22],[24],[28] However, a significant minority of volumetric studies have demonstrated correlation between increase in hippocampal and/or amygdala volume and improvement of symptoms.[21],[25],[30]Another set of studies have used diffusion tensor imaging, functional MRI (fMRI), anatomical connectome, and structural network analysis to study the effect of ECT on the brain. The first of these studies by Abbott et al.

In 2014 demonstrated that on fMRI, the connectivity between right and left hippocampus was significantly reduced in patients with severe depression. It was also shown that the connectivity was normalized following ECT, and symptom improvement was correlated with an increase in connectivity.[22] In a first of its kind DTI study, Lyden et al. In 2014 demonstrated that fractional anisotropy which is a measure of white matter tract or fiber density is increased post ECT in patients with severe depression in the anterior cingulum, forceps minor, and the dorsal aspect of the left superior longitudinal fasciculus.

The authors suggested that ECT acts to normalize major depressive disorder-related abnormalities in the structural connectivity of the dorsal fronto-limbic pathways.[23] Another DTI study in 2015 constructed large-scale anatomical networks of the human brain – connectomes, based on white matter fiber tractography. The authors found significant reorganization in the anatomical connections involving the limbic structure, temporal lobe, and frontal lobe. It was also found that connection changes between amygdala and para hippocampus correlated with reduction in depressive symptoms.[26] In 2016, Wolf et al.

Used a source-based morphometry approach to study the structural networks in patients with depression and schizophrenia and the effect of ECT on the same. It was found that the medial prefrontal cortex/anterior cingulate cortex (ACC/MPFC) network, MTL network, bilateral thalamus, and left cerebellar regions/precuneus exhibited significant difference between healthy controls and the patient population. It was also demonstrated that administration of ECT leads to significant increase in the network strength of the ACC/MPFC network and the MTL network though the increase in network strength and symptom amelioration were not correlated.[32]Building on these studies, a recently published meta-analysis has attempted a quantitative synthesis of brain volume changes – focusing on hippocampal volume increase following ECT in patients with major depressive disorder and bipolar disorder.

The authors initially selected 32 original articles from which six articles met the criteria for quantitative synthesis. The results showed significant increase in the volume of the right and left hippocampus following ECT. For the rest of the brain regions, the heterogeneity in protocols and imaging techniques did not permit a quantitative analysis, and the authors have resorted to a narrative review similar to the present one with similar conclusions.[44] Focusing exclusively on hippocampal volume change in ECT, Oltedal et al.

In 2018 conducted a mega-analysis of 281 patients with major depressive disorder treated with ECT enrolled at ten different global sites of the Global ECT-MRI Research Collaboration.[45] Similar to previous studies, there was a significant increase in hippocampal volume bilaterally with a dose–response relationship with the number of ECTs administered. Furthermore, bilateral (B/L) ECT was associated with an equal increase in volume in both right and left hippocampus, whereas right unilateral ECT was associated with greater volume increase in the right hippocampus. Finally, contrary to expectation, clinical improvement was found to be negatively correlated with hippocampal volume.Thus, a review of the current evidence amply demonstrates that from looking for ECT-related brain damage – and finding none, we have now moved ahead to looking for a mechanistic understanding of the effect of ECT.

In this regard, it has been found that ECT does induce structural changes in the brain – a fact which has been seized upon by some to claim that ECT causes brain damage.[46] Such statements should, however, be weighed against the definition of damage as understood by the scientific medical community and patient population. Neuroanatomical changes associated with effective ECT can be better described as ECT-induced brain neuroplasticity or ECT-induced brain neuromodulation rather than ECT-induced brain damage. Metabolic Neuroimaging Studies.

Magnetic Resonance Spectroscopic Imaging Magnetic resonance spectroscopic imaging (MRSI) uses a phase-encoding procedure to map the spatial distribution of magnetic resonance (MR) signals of different molecules. The crucial difference, however, is that while MRI maps the MR signals of water molecules, MRSI maps the MR signals generated by different metabolites – such as N-acetyl aspartate (NAA) and choline-containing compounds. However, the concentration of these metabolites is at least 10,000 times lower than water molecules and hence the signal strength generated would also be correspondingly lower.

However, MRSI offers us the unique advantage of studying in vivo the change in the concentration of brain metabolites, which has been of great significance in fields such as psychiatry, neurology, and basic neuroscience research.[47]MRSI studies on ECT in patients with depression have focused largely on four metabolites in the human brain – NAA, choline-containing compounds (Cho) which include majorly cell membrane compounds such as glycerophosphocholine, phosphocholine and a miniscule contribution from acetylcholine, creatinine (Cr) and glutamine and glutamate together (Glx). NAA is located exclusively in the neurons, and is suggested to be a marker of neuronal viability and functionality.[48] Choline-containing compounds (Cho) mainly include the membrane compounds, and an increase in Cho would be suggestive of increased membrane turnover. Cr serves as a marker of cellular energy metabolism, and its levels are usually expected to remain stable.

The regions which have been most widely studied in MRSI studies include the bilateral hippocampus and amygdala, dorsolateral prefrontal cortex (DLPFC), and ACC.Till date, five MRSI studies have measured NAA concentration in the hippocampus before and after ECT. Of these, three studies showed that there is no significant change in the NAA concentration in the hippocampus following ECT.[33],[38],[49] On the other hand, two recent studies have demonstrated a statistically significant reduction in NAA concentration in the hippocampus following ECT.[39],[40] The implications of these results are of significant interest to us in answering our titular question. A normal level of NAA following ECT could signify that there is no significant neuronal death or damage following ECT, while a reduction would signal the opposite.

However, a direct comparison between these studies is complicated chiefly due to the different ECT protocols, which has been used in these studies. It must, however, be acknowledged that the three older studies used 1.5 T MRI, whereas the two newer studies used a higher 3 T MRI which offers betters signal-to-noise ratio and hence lesser risk of errors in the measurement of metabolite concentrations. The authors of a study by Njau et al.[39] argue that a change in NAA levels might reflect reversible changes in neural metabolism rather than a permanent change in the number or density of neurons and also that reduced NAA might point to a change in the ratio of mature to immature neurons, which, in fact, might reflect enhanced adult neurogenesis.

Thus, the authors warn that to conclude whether a reduction in NAA concentration is beneficial or harmful would take a simultaneous measurement of cognitive functioning, which was lacking in their study. In 2017, Cano et al. Also demonstrated a significant reduction in NAA/Cr ratio in the hippocampus post ECT.

More significantly, the authors also showed a significant increase in Glx levels in the hippocampus following ECT, which was also associated with an increase in hippocampal volume.[40] To explain these three findings, the authors proposed that ECT produces a neuroinflammatory response in the hippocampus – likely mediated by Glx, which has been known to cause inflammation at higher concentrations, thereby accounting for the increase in hippocampal volume with a reduction in NAA concentration. The cause for the volume increase remains unclear – with the authors speculating that it might be due to neuronal swelling or due to angiogenesis. However, the same study and multiple other past studies [21],[25],[30] have demonstrated that hippocampal volume increase was correlated with clinical improvement following ECT.

Thus, we are led to the hypothesis that the same mechanism which drives clinical improvement with ECT is also responsible for the cognitive impairment following ECT. Whether this is a purely neuroinflammatory response or a neuroplastic response or a neuroinflammatory response leading to some form of neuroplasticity is a critical question, which remains to be answered.[40]Studies which have analyzed NAA concentration change in other brain areas have also produced conflicting results. The ACC is another area which has been studied in some detail utilizing the MRSI technique.

In 2003, Pfleiderer et al. Demonstrated that there was no significant change in the NAA and Cho levels in the ACC following ECT. This would seem to suggest that there was no neurogenesis or membrane turnover in the ACC post ECT.[36] However, this finding was contested by Merkl et al.

In 2011, who demonstrated that NAA levels were significantly reduced in the left ACC in patients with depression and that these levels were significantly elevated following ECT.[37] This again is contested by Njau et al. Who showed that NAA levels are significantly reduced following ECT in the left dorsal ACC.[39] A direct comparison of these three studies is complicated by the different ECT and imaging parameters used and hence, no firm conclusion can be made on this point at this stage. In addition to this, one study had demonstrated increased NAA levels in the amygdala following administration of ECT,[34] with a trend level increase in Cho levels, which again is suggestive of neurogenesis and/or neuroplasticity.

A review of studies on the DLPFC reveals a similarly confusing picture with one study, each showing no change, reduction, and elevation of concentration of NAA following ECT.[35],[37],[39] Here, again, a direct comparison of the three studies is made difficult by the heterogeneous imaging and ECT protocols followed by them.A total of five studies have analyzed the concentration of choline-containing compounds (Cho) in patients undergoing ECT. Conceptually, an increase in Cho signals is indicative of increased membrane turnover, which is postulated to be associated with synaptogenesis, neurogenesis, and maturation of neurons.[31] Of these, two studies measured Cho concentration in the B/L hippocampus, with contrasting results. Ende et al.

In 2000 demonstrated a significant elevation in Cho levels in B/L hippocampus after ECT, while Jorgensen et al. In 2015 failed to replicate the same finding.[33],[38] Cho levels have also been studied in the amygdala, ACC, and the DLPFC. However, none of these studies showed a significant increase or decrease in Cho levels before and after ECT in the respective brain regions studied.

In addition, no significant difference was seen in the pre-ECT Cho levels of patients compared to healthy controls.[34],[36],[37]In review, we must admit that MRSI studies are still at a preliminary stage with significant heterogeneity in ECT protocols, patient population, and regions of the brain studied. At this stage, it is difficult to draw any firm conclusions except to acknowledge the fact that the more recent studies – Njau et al., 2017, Cano, 2017, and Jorgensen et al., 2015 – have shown decrease in NAA concentration and no increase in Cho levels [38],[39],[40] – as opposed to the earlier studies by Ende et al.[33] The view offered by the more recent studies is one of a neuroinflammatory models of action of ECT, probably driving neuroplasticity in the hippocampus. This would offer a mechanistic understanding of both clinical response and the phenomenon of cognitive impairment associated with ECT.

However, this conclusion is based on conjecture, and more work needs to be done in this area. Body Fluid Biochemical Marker Studies Another line of evidence for analyzing the effect of ECT on the human brain is the study of concentration of neurotrophins in the plasma or serum. Neurotrophins are small protein molecules which mediate neuronal survival and development.

The most prominent among these is brain-derived neurotrophic factor (BDNF) which plays an important role in neuronal survival, plasticity, and migration.[50] A neurotrophic theory of mood disorders was suggested which hypothesized that depressive disorders are associated with a decreased expression of BDNF in the limbic structures, resulting in the atrophy of these structures.[51] It was also postulated that antidepressant treatment has a neurotrophic effect which reverses the neuronal cell loss, thereby producing a therapeutic effect. It has been well established that BDNF is decreased in mood disorders.[52] It has also been shown that clinical improvement of depression is associated with increase in BDNF levels.[53] Thus, serum BDNF levels have been tentatively proposed as a biomarker for treatment response in depression. Recent meta-analytic evidence has shown that ECT is associated with significant increase in serum BDNF levels in patients with major depressive disorder.[54] Considering that BDNF is a potent stimulator of neurogenesis, the elevation of serum BDNF levels following ECT lends further credence to the theory that ECT leads to neurogenesis in the hippocampus and other limbic structures, which, in turn, mediates the therapeutic action of ECT.

Cognitive Impairment Studies Cognitive impairment has always been the single-most important side effect associated with ECT.[55] Concerns regarding long-term cognitive impairment surfaced soon after the introduction of ECT and since then has grown to become one of the most controversial aspects of ECT.[56] Anti-ECT groups have frequently pointed out to cognitive impairment following ECT as evidence of ECT causing brain damage.[56] A meta-analysis by Semkovska and McLoughlin in 2010 is one of the most detailed studies which had attempted to settle this long-standing debate.[57] The authors reviewed 84 studies (2981 participants), which had used a combined total of 22 standardized neuropsychological tests assessing various cognitive functions before and after ECT in patients diagnosed with major depressive disorder. The different cognitive domains reviewed included processing speed, attention/working memory, verbal episodic memory, visual episodic memory, spatial problem-solving, executive functioning, and intellectual ability. The authors concluded that administration of ECT for depression is associated with significant cognitive impairment in the first few days after ECT administration.

However, it was also seen that impairment in cognitive functioning resolved within a span of 2 weeks and thereafter, a majority of cognitive domains even showed mild improvement compared to the baseline performance. It was also demonstrated that not a single cognitive domain showed persistence of impairment beyond 15 days after ECT.Memory impairment following ECT can be analyzed broadly under two conceptual schemes – one that classifies memory impairment as objective memory impairment and subjective memory impairment and the other that classifies it as impairment in anterograde memory versus impairment in retrograde memory. Objective memory can be roughly defined as the ability to retrieve stored information and can be measured by various standardized neuropsychological tests.

Subjective memory or meta-memory, on the other hand, refers to the ability to make judgments about one's ability to retrieve stored information.[58] As described previously, it has been conclusively demonstrated that anterograde memory impairment does not persist beyond 2 weeks after ECT.[57] However, one of the major limitations of this meta-analysis was the lack of evidence on retrograde amnesia following ECT. This is particularly unfortunate considering that it is memory impairment – particularly retrograde amnesia which has received the most attention.[59] In addition, reports of catastrophic retrograde amnesia have been repeatedly held up as sensational evidence of the lasting brain damage produced by ECT.[59] Admittedly, studies on retrograde amnesia are fewer and less conclusive than on anterograde amnesia.[60],[61] At present, the results are conflicting, with some studies finding some impairment in retrograde memory – particularly autobiographical retrograde memory up to 6 months after ECT.[62],[63],[64],[65] However, more recent studies have failed to support this finding.[66],[67] While they do demonstrate an impairment in retrograde memory immediately after ECT, it was seen that this deficit returned to pre-ECT levels within a span of 1–2 months and improved beyond baseline performance at 6 months post ECT.[66] Adding to the confusion are numerous factors which confound the assessment of retrograde amnesia. It has been shown that depressive symptoms can produce significant impairment of retrograde memory.[68],[69] It has also been demonstrated that sine-wave ECT produces significantly more impairment of retrograde memory as compared to brief-pulse ECT.[70] However, from the 1990s onward, sine-wave ECT has been completely replaced by brief-pulse ECT, and it is unclear as to the implications of cognitive impairment from the sine-wave era in contemporary ECT practice.Another area of concern are reports of subjective memory impairment following ECT.

One of the pioneers of research into subjective memory impairment were Squire and Chace who published a series of studies in the 1970s demonstrating the adverse effect of bilateral ECT on subjective assessment of memory.[62],[63],[64],[65] However, most of the studies conducted post 1980 – from when sine-wave ECT was replaced by brief-pulse ECT report a general improvement in subjective memory assessments following ECT.[71] In addition, most of the recent studies have failed to find a significant association between measures of subjective and objective memory.[63],[66],[70],[72],[73],[74] It has also been shown that subjective memory impairment is strongly associated with the severity of depressive symptoms.[75] In light of these facts, the validity and value of measures of subjective memory impairment as a marker of cognitive impairment and brain damage following ECT have been questioned. However, concerns regarding subjective memory impairment and catastrophic retrograde amnesia continue to persist, with significant dissonance between the findings of different research groups and patient self-reports in various media.[57]Some studies reported the possibility of ECT being associated with the development of subsequent dementia.[76],[77] However, a recent large, well-controlled prospective Danish study found that the use of ECT was not associated with elevated incidence of dementia.[78] Conclusion Our titular question is whether ECT leads to brain damage, where damage indicates destruction or degeneration of nerves or nerve tracts in the brain, which leads to loss of function. This issue was last addressed by Devanand et al.

In 1994 since which time our understanding of ECT has grown substantially, helped particularly by the advent of modern-day neuroimaging techniques which we have reviewed in detail. And, what these studies reveal is rather than damaging the brain, ECT has a neuromodulatory effect on the brain. The various lines of evidence – structural neuroimaging studies, functional neuroimaging studies, neurochemical and metabolic studies, and serum BDNF studies all point toward this.

These neuromodulatory changes have been localized to the hippocampus, amygdala, and certain other parts of the limbic system. How exactly these changes mediate the improvement of depressive symptoms is a question that remains unanswered. However, there is little by way of evidence from neuroimaging studies which indicates that ECT causes destruction or degeneration of neurons.

Though cognitive impairment studies do show that there is objective impairment of certain functions – particularly memory immediately after ECT, these impairments are transient with full recovery within a span of 2 weeks. Perhaps, the single-most important unaddressed concern is retrograde amnesia, which has been shown to persist for up to 2 months post ECT. In this regard, the recent neurometabolic studies have offered a tentative mechanism of action of ECT, producing a transient inflammation in the limbic cortex, which, in turn, drives neurogenesis, thereby exerting a neuromodulatory effect.

This hypothesis would explain both the cognitive adverse effects of ECT – due to the transient inflammation – and the long-term improvement in mood – neurogenesis in the hippocampus. Although unproven at present, such a hypothesis would imply that cognitive impairment is tied in with the mechanism of action of ECT and not an indicator of damage to the brain produced by ECT.The review of literature suggests that ECT does cause at least structural and functional changes in the brain, and these are in all probability related to the effects of the ECT. However, these cannot be construed as brain damage as is usually understood.

Due to the relative scarcity of data that directly examines the question of whether ECT causes brain damage, it is not possible to conclusively answer this question. However, in light of enduring ECT survivor accounts, there is a need to design studies that specifically answer this question.Financial support and sponsorshipNil.Conflicts of interestThere are no conflicts of interest. References 1.Payne NA, Prudic J.

Electroconvulsive therapy. Part I. A perspective on the evolution and current practice of ECT.

J Psychiatr Pract 2009;15:346-68. 2.Lauber C, Nordt C, Falcato L, Rössler W. Can a seizure help?.

The public's attitude toward electroconvulsive therapy. Psychiatry Res 2005;134:205-9. 3.Stefanazzi M.

Is electroconvulsive therapy (ECT) ever ethically justified?. If so, under what circumstances. HEC Forum 2013;25:79-94.

4.Devanand DP, Dwork AJ, Hutchinson ER, Bolwig TG, Sackeim HA. Does ECT alter brain structure?. Am J Psychiatry 1994;151:957-70.

5.Devanand DP. Does electroconvulsive therapy damage brain cells?. Semin Neurol 1995;15:351-7.

6.Pearsall J, Trumble B, editors. The Oxford English Reference Dictionary. 2nd ed.

Oxford, England. New York. Oxford University Press.

1996. 7.Collin PH. Dictionary of Medical Terms.

2004. 8.Hajdu SI. Entries on laboratory medicine in the first illustrated medical dictionary.

Ann Clin Lab Sci 2005;35:465-8. 9.Mander AJ, Whitfield A, Kean DM, Smith MA, Douglas RH, Kendell RE. Cerebral and brain stem changes after ECT revealed by nuclear magnetic resonance imaging.

Br J Psychiatry 1987;151:69-71. 10.Coffey CE, Weiner RD, Djang WT, Figiel GS, Soady SA, Patterson LJ, et al. Brain anatomic effects of electroconvulsive therapy.

A prospective magnetic resonance imaging study. Arch Gen Psychiatry 1991;48:1013-21. 11.Scott AI, Douglas RH, Whitfield A, Kendell RE.

Time course of cerebral magnetic resonance changes after electroconvulsive therapy. Br J Psychiatry 1990;156:551-3. 12.Pande AC, Grunhaus LJ, Aisen AM, Haskett RF.

A preliminary magnetic resonance imaging study of ECT-treated depressed patients. Biol Psychiatry 1990;27:102-4. 13.Coffey CE, Figiel GS, Djang WT, Sullivan DC, Herfkens RJ, Weiner RD.

Effects of ECT on brain structure. A pilot prospective magnetic resonance imaging study. Am J Psychiatry 1988;145:701-6.

14.Qiu H, Li X, Zhao W, Du L, Huang P, Fu Y, et al. Electroconvulsive therapy-Induced brain structural and functional changes in major depressive disorders. A longitudinal study.

Med Sci Monit 2016;22:4577-86. 15.Kunigiri G, Jayakumar PN, Janakiramaiah N, Gangadhar BN. MRI T2 relaxometry of brain regions and cognitive dysfunction following electroconvulsive therapy.

Indian J Psychiatry 2007;49:195-9. [PUBMED] [Full text] 16.Pirnia T, Joshi SH, Leaver AM, Vasavada M, Njau S, Woods RP, et al. Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex.

Transl Psychiatry 2016;6:e832. 17.Szabo K, Hirsch JG, Krause M, Ende G, Henn FA, Sartorius A, et al. Diffusion weighted MRI in the early phase after electroconvulsive therapy.

Neurol Res 2007;29:256-9. 18.Nordanskog P, Dahlstrand U, Larsson MR, Larsson EM, Knutsson L, Johanson A. Increase in hippocampal volume after electroconvulsive therapy in patients with depression.

A volumetric magnetic resonance imaging study. J ECT 2010;26:62-7. 19.Nordanskog P, Larsson MR, Larsson EM, Johanson A.

Hippocampal volume in relation to clinical and cognitive outcome after electroconvulsive therapy in depression. Acta Psychiatr Scand 2014;129:303-11. 20.Tendolkar I, van Beek M, van Oostrom I, Mulder M, Janzing J, Voshaar RO, et al.

Electroconvulsive therapy increases hippocampal and amygdala volume in therapy refractory depression. A longitudinal pilot study. Psychiatry Res 2013;214:197-203.

21.Dukart J, Regen F, Kherif F, Colla M, Bajbouj M, Heuser I, et al. Electroconvulsive therapy-induced brain plasticity determines therapeutic outcome in mood disorders. Proc Natl Acad Sci U S A 2014;111:1156-61.

22.Abbott CC, Jones T, Lemke NT, Gallegos P, McClintock SM, Mayer AR, et al. Hippocampal structural and functional changes associated with electroconvulsive therapy response. Transl Psychiatry 2014;4:e483.

23.Lyden H, Espinoza RT, Pirnia T, Clark K, Joshi SH, Leaver AM, et al. Electroconvulsive therapy mediates neuroplasticity of white matter microstructure in major depression. Transl Psychiatry 2014;4:e380.

24.Bouckaert F, De Winter FL, Emsell L, Dols A, Rhebergen D, Wampers M, et al. Grey matter volume increase following electroconvulsive therapy in patients with late life depression. A longitudinal MRI study.

J Psychiatry Neurosci 2016;41:105-14. 25.Ota M, Noda T, Sato N, Okazaki M, Ishikawa M, Hattori K, et al. Effect of electroconvulsive therapy on gray matter volume in major depressive disorder.

J Affect Disord 2015;186:186-91. 26.Zeng J, Luo Q, Du L, Liao W, Li Y, Liu H, et al. Reorganization of anatomical connectome following electroconvulsive therapy in major depressive disorder.

Neural Plast 2015;2015:271674. 27.van Eijndhoven P, Mulders P, Kwekkeboom L, van Oostrom I, van Beek M, Janzing J, et al. Bilateral ECT induces bilateral increases in regional cortical thickness.

Transl Psychiatry 2016;6:e874. 28.Bouckaert F, Dols A, Emsell L, De Winter FL, Vansteelandt K, Claes L, et al. Relationship between hippocampal volume, serum BDNF, and depression severity following electroconvulsive therapy in late-life depression.

Neuropsychopharmacology 2016;41:2741-8. 29.Depping MS, Nolte HM, Hirjak D, Palm E, Hofer S, Stieltjes B, et al. Cerebellar volume change in response to electroconvulsive therapy in patients with major depression.

Prog Neuropsychopharmacol Biol Psychiatry 2017;73:31-5. 30.Joshi SH, Espinoza RT, Pirnia T, Shi J, Wang Y, Ayers B, et al. Structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy in major depression.

Biol Psychiatry 2016;79:282-92. 31.Wade BS, Joshi SH, Njau S, Leaver AM, Vasavada M, Woods RP, et al. Effect of electroconvulsive therapy on striatal morphometry in major depressive disorder.

Neuropsychopharmacology 2016;41:2481-91. 32.Wolf RC, Nolte HM, Hirjak D, Hofer S, Seidl U, Depping MS, et al. Structural network changes in patients with major depression and schizophrenia treated with electroconvulsive therapy.

Eur Neuropsychopharmacol 2016;26:1465-74. 33.Ende G, Braus DF, Walter S, Weber-Fahr W, Henn FA. The hippocampus in patients treated with electroconvulsive therapy.

A proton magnetic resonance spectroscopic imaging study. Arch Gen Psychiatry 2000;57:937-43. 34.Michael N, Erfurth A, Ohrmann P, Arolt V, Heindel W, Pfleiderer B.

Metabolic changes within the left dorsolateral prefrontal cortex occurring with electroconvulsive therapy in patients with treatment resistant unipolar depression. Psychol Med 2003;33:1277-84. 35.Michael N, Erfurth A, Ohrmann P, Arolt V, Heindel W, Pfleiderer B.

Neurotrophic effects of electroconvulsive therapy. A proton magnetic resonance study of the left amygdalar region in patients with treatment-resistant depression. Neuropsychopharmacology 2003;28:720-5.

36.Pfleiderer B, Michael N, Erfurth A, Ohrmann P, Hohmann U, Wolgast M, et al. Effective electroconvulsive therapy reverses glutamate/glutamine deficit in the left anterior cingulum of unipolar depressed patients. Psychiatry Res 2003;122:185-92.

37.Merkl A, Schubert F, Quante A, Luborzewski A, Brakemeier EL, Grimm S, et al. Abnormal cingulate and prefrontal cortical neurochemistry in major depression after electroconvulsive therapy. Biol Psychiatry 2011;69:772-9.

38.Jorgensen A, Magnusson P, Hanson LG, Kirkegaard T, Benveniste H, Lee H, et al. Regional brain volumes, diffusivity, and metabolite changes after electroconvulsive therapy for severe depression. Acta Psychiatr Scand 2016;133:154-64.

39.Njau S, Joshi SH, Espinoza R, Leaver AM, Vasavada M, Marquina A, et al. Neurochemical correlates of rapid treatment response to electroconvulsive therapy in patients with major depression. J Psychiatry Neurosci 2017;42:6-16.

40.Cano M, Martínez-Zalacaín I, Bernabéu-Sanz Á, Contreras-Rodríguez O, Hernández-Ribas R, Via E, et al. Brain volumetric and metabolic correlates of electroconvulsive therapy for treatment-resistant depression. A longitudinal neuroimaging study.

Transl Psychiatry 2017;7:e1023. 41.Figiel GS, Krishnan KR, Doraiswamy PM. Subcortical structural changes in ECT-induced delirium.

J Geriatr Psychiatry Neurol 1990;3:172-6. 42.Rotheneichner P, Lange S, O'Sullivan A, Marschallinger J, Zaunmair P, Geretsegger C, et al. Hippocampal neurogenesis and antidepressive therapy.

Shocking relations. Neural Plast 2014;2014:723915. 43.Singh A, Kar SK.

How electroconvulsive therapy works?. Understanding the neurobiological mechanisms. Clin Psychopharmacol Neurosci 2017;15:210-21.

44.Gbyl K, Videbech P. Electroconvulsive therapy increases brain volume in major depression. A systematic review and meta-analysis.

Acta Psychiatr Scand 2018;138:180-95. 45.Oltedal L, Narr KL, Abbott C, Anand A, Argyelan M, Bartsch H, et al. Volume of the human hippocampus and clinical response following electroconvulsive therapy.

Biol Psychiatry 2018;84:574-81. 46.Breggin PR. Brain-Disabling Treatments in Psychiatry.

Drugs, Electroshock, and the Role of the FDA. New York. Springer Pub.

Co.. 1997. 47.Posse S, Otazo R, Dager SR, Alger J.

MR spectroscopic imaging. Principles and recent advances. J Magn Reson Imaging 2013;37:1301-25.

48.Simmons ML, Frondoza CG, Coyle JT. Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 1991;45:37-45.

49.Obergriesser T, Ende G, Braus DF, Henn FA. Long-term follow-up of magnetic resonance-detectable choline signal changes in the hippocampus of patients treated with electroconvulsive therapy. J Clin Psychiatry 2003;64:775-80.

50.Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity. The synaptic consolidation hypothesis.

Prog Neurobiol 2005;76:99-125. 51.Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders.

Biol Psychiatry 2006;59:1116-27. 52.Bocchio-Chiavetto L, Bagnardi V, Zanardini R, Molteni R, Nielsen MG, Placentino A, et al. Serum and plasma BDNF levels in major depression.

A replication study and meta-analyses. World J Biol Psychiatry 2010;11:763-73. 53.Brunoni AR, Lopes M, Fregni F.

A systematic review and meta-analysis of clinical studies on major depression and BDNF levels. Implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol 2008;11:1169-80.

54.Rocha RB, Dondossola ER, Grande AJ, Colonetti T, Ceretta LB, Passos IC, et al. Increased BDNF levels after electroconvulsive therapy in patients with major depressive disorder. A meta-analysis study.

J Psychiatr Res 2016;83:47-53. 55.UK ECT Review Group. Efficacy and safety of electroconvulsive therapy in depressive disorders.

A systematic review and meta-analysis. Lancet 2003;361:799-808. 56.57.Semkovska M, McLoughlin DM.

Objective cognitive performance associated with electroconvulsive therapy for depression. A systematic review and meta-analysis. Biol Psychiatry 2010;68:568-77.

58.Tulving E, Madigan SA. Memory and verbal learning. Annu Rev Psychol 1970;21:437-84.

59.Rose D, Fleischmann P, Wykes T, Leese M, Bindman J. Patients' perspectives on electroconvulsive therapy. Systematic review.

BMJ 2003;326:1363. 60.Semkovska M, McLoughlin DM. Measuring retrograde autobiographical amnesia following electroconvulsive therapy.

Historical perspective and current issues. J ECT 2013;29:127-33. 61.Fraser LM, O'Carroll RE, Ebmeier KP.

The effect of electroconvulsive therapy on autobiographical memory. A systematic review. J ECT 2008;24:10-7.

62.Squire LR, Chace PM. Memory functions six to nine months after electroconvulsive therapy. Arch Gen Psychiatry 1975;32:1557-64.

63.Squire LR, Slater PC. Electroconvulsive therapy and complaints of memory dysfunction. A prospective three-year follow-up study.

Br J Psychiatry 1983;142:1-8. 64.Squire LR, Slater PC, Miller PL. Retrograde amnesia and bilateral electroconvulsive therapy.

Long-term follow-up. Arch Gen Psychiatry 1981;38:89-95. 65.Squire LR, Wetzel CD, Slater PC.

Memory complaint after electroconvulsive therapy. Assessment with a new self-rating instrument. Biol Psychiatry 1979;14:791-801.

66.Calev A, Nigal D, Shapira B, Tubi N, Chazan S, Ben-Yehuda Y, et al. Early and long-term effects of electroconvulsive therapy and depression on memory and other cognitive functions. J Nerv Ment Dis 1991;179:526-33.

67.Sackeim HA, Prudic J, Devanand DP, Nobler MS, Lisanby SH, Peyser S, et al. A prospective, randomized, double-blind comparison of bilateral and right unilateral electroconvulsive therapy at different stimulus intensities. Arch Gen Psychiatry 2000;57:425-34.

68.Abrams R. Does brief-pulse ECT cause persistent or permanent memory impairment?. J ECT 2002;18:71-3.

69.Peretti CS, Danion JM, Grangé D, Mobarek N. Bilateral ECT and autobiographical memory of subjective experiences related to melancholia. A pilot study.

J Affect Disord 1996;41:9-15. 70.Weiner RD, Rogers HJ, Davidson JR, Squire LR. Effects of stimulus parameters on cognitive side effects.

Ann N Y Acad Sci 1986;462:315-25. 71.Prudic J, Peyser S, Sackeim HA. Subjective memory complaints.

A review of patient self-assessment of memory after electroconvulsive therapy. J ECT 2000;16:121-32. 72.Sackeim HA, Prudic J, Devanand DP, Kiersky JE, Fitzsimons L, Moody BJ, et al.

Effects of stimulus intensity and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy. N Engl J Med 1993;328:839-46. 73.Frith CD, Stevens M, Johnstone EC, Deakin JF, Lawler P, Crow TJ.

Effects of ECT and depression on various aspects of memory. Br J Psychiatry 1983;142:610-7. 74.Ng C, Schweitzer I, Alexopoulos P, Celi E, Wong L, Tuckwell V, et al.

Efficacy and cognitive effects of right unilateral electroconvulsive therapy. J ECT 2000;16:370-9. 75.Coleman EA, Sackeim HA, Prudic J, Devanand DP, McElhiney MC, Moody BJ.

Subjective memory complaints prior to and following electroconvulsive therapy. Biol Psychiatry 1996;39:346-56. 76.Berggren Š, Gustafson L, Höglund P, Johanson A.

A long-term longitudinal follow-up of depressed patients treated with ECT with special focus on development of dementia. J Affect Disord 2016;200:15-24. 77.Brodaty H, Hickie I, Mason C, Prenter L.

A prospective follow-up study of ECT outcome in older depressed patients. J Affect Disord 2000;60:101-11. 78.Osler M, Rozing MP, Christensen GT, Andersen PK, Jørgensen MB.

Electroconvulsive therapy and risk of dementia in patients with affective disorders. A cohort study. Lancet Psychiatry 2018;5:348-56.

Correspondence Address:Dr. Shubh Mohan SinghDepartment of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh IndiaSource of Support. None, Conflict of Interest.

NoneDOI. 10.4103/psychiatry.IndianJPsychiatry_239_19 Tables [Table 1], [Table 2].